
Stage:Query Execution Time Prediction in Amazon Redshift
Ziniu Wu†

ziniuw@mit.edu
MIT CSAIL

Ryan Marcus†
rcmarcus@seas.upenn.edu
University of Pennsylvania

Zhengchun Liu
zcl@amazon.com

Amazon Web Services

Parimarjan Negi†
pnegi@mit.edu
MIT CSAIL

Vikram Nathan
vrnathan@amazon.com
Amazon Web Services

Pascal Pfeil
pfeip@amazon.de

Amazon Web Services

Gaurav Saxena
gssaxena@amazon.com
Amazon Web Services

Mohammad Rahman
rerahman@amazon.com
Amazon Web Services

Balakrishnan (Murali)
Narayanaswamy

muralibn@amazon.com
Amazon Web Services

Tim Kraska†
kraska@mit.edu

Amazon Web Services, MIT CSAIL

ABSTRACT
Query performance (e.g., execution time) prediction is a critical com-
ponent of modern DBMSes. As a pioneering cloud data warehouse,
Amazon Redshift relies on an accurate execution time prediction
for many downstream tasks, ranging from high-level optimizations,
such as automatically creating materialized views, to low-level
tasks on the critical path of query execution, such as admission,
scheduling, and execution resource control. Unfortunately, many
existing execution time prediction techniques, including those used
in Redshift, suffer from cold start issues, inaccurate estimation, and
are not robust against workload/data changes.

In this paper, we propose a novel hierarchical execution time
predictor: the Stage predictor. The Stage predictor is designed to
leverage the unique characteristics and challenges faced by Redshift.
The Stage predictor consists of threemodel states: an execution time
cache, a lightweight local model optimized for a specific DB instance
with uncertainty measurement, and a complex global model that is
transferable across all instances in Redshift. We design a systematic
approach to use these models that best leverages optimality (cache),
instance-optimization (local model), and transferable knowledge
about Redshift (global model). Experimentally, we show that the
Stage predictor makes more accurate and robust predictions while
maintaining a practical inference latency and memory overhead.
Overall, the Stage predictor can improve the average query execu-
tion latency by 20% on these instances compared to the prior query
performance predictor in Redshift.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’24, June 09–15, 2024, Santiago, Chile
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Ziniu Wu, Ryan Marcus, Zhengchun Liu, Parimarjan Negi, Vikram Nathan,
Pascal Pfeil, Gaurav Saxena, Mohammad Rahman, Balakrishnan (Murali)
Narayanaswamy, TimKraska . 2024. Stage: Query Execution Time Prediction
in Amazon Redshift. In Proceedings of ACM SIGMOD/PODS International
Conference on Management of Data (SIGMOD’24). ACM, New York, NY, USA,
15 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Predicting the execution time (exec-time) of a query before actually
executing the query is a crucial component for a number of tasks
in intelligent cloud DBMSes, such as query optimization [21, 52],
workload scheduling [46, 57], admission control [55], resource man-
agement [7, 29, 53], and maintaining SLAs [9, 34].

Amazon Redshift, a pioneering cloud data warehouse, relies on
exec-time prediction for many downstream tasks, ranging from
high-level optimizations (e.g., automatically creating materialized
views [5]) to low-level tasks on the critical path of query execution
(e.g. admission, scheduling and execution resource control inside
its workload manager [50]). For example, the workload manager in
Redshift separates queries into “short-running” and “long-running”
queues based on estimated exec-time. The short-running query
queue has its own dedicated resources and unique optimizations to
meet users’ expectations of fast execution. If a long-running query
is erroneously placed into the short-running queue by the exec-time
predictor, the long-running query can cause head-of-line blocking,
significantly delaying the execution of short-running queries in the
queue. Conversely, if a shorting-running is wrongly placed into the
long-running queue, the short query may queue up for minutes
before execution. Both cases can severely affect the overall query
performance on a cluster and the user experience of Redshift.

The existing exec-time predictor inside Amazon Redshift (Au-
toWLMpredictor [50]) uses an instance-optimized XGBoostmodel [8]
trained on each customer’s database cluster, using each cluster’s

†Work conducted while affiliated with Amazon Web Services.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SIGMOD’24, June 09–15, 2024, Santiago, Chile Wu et al.

��� ��
 ��� ��� ��� 	��

��!%�"��#�%��!%��'�$��������(

���

��

���

���

���

	��

�
�
"
�
�
�
$
��
�
��
�
�%
#
$
�
"
�

����������#���$���%#$�"#���&��'�"�����#�

���#�#$���������
���%��!%������(�!%�"��#

���(�	���������#���$���%#$�"#���&�����

"� ��$����!%�"��#��'�$��������(�

	�	 	�� 	�
 	��

��"���%���!�

���

��

���

���

���

	��

��
 �

��
"��

��
��

#�
 %

�

����������!���"��#� ��!
��$��#"�����#��� �	���!

N
o.

 o
f c

lu
ste

rs
 (%

)

0

20

40

60

80

100
40% of Redshift clusters have
> 50% unique daily queries

Only 13% of clusters have
no repeating queries

0

20

40

60

80

100

N
o.

 o
f q

ue
rie

s (
%

)

0 20 40 60 80 100
No. of unique queries within a day (%)

101 103 105 107
Query latency (ms)

40% of Redshift queries
execute in under 100ms

(a) Distribution of clusters by the
% of queries that were unique
within a day (not repeated).

��� ��
 ��� ��� ��� 	��

��!%�"��#�%��!%��'�$��������(

���

��

���

���

���

	��

�
�
"
�
�
�
$
��
�
��
�
�%
#
$
�
"
�

����������#���$���%#$�"#���&��'�"�����#�

���#�#$���������
���%��!%������(�!%�"��#

���(�	���������#���$���%#$�"#���&�����

"� ��$����!%�"��#��'�$��������(�

	�	 	�� 	�
 	��

��"���%���!�

���

��

���

���

���

	��

��
 �

��
"��

��
��

#�
 %

�

����������!���"��#� ��!
��$��#"�����#��� �	���!

N
o.

 o
f c

lu
ste

rs
 (%

)

0

20

40

60

80

100
40% of Redshift clusters have
> 50% unique daily queries

Only 13% of clusters have
no repeating queries

0

20

40

60

80

100

N
o.

 o
f q

ue
rie

s (
%

)

0 20 40 60 80 100
No. of unique queries within a day (%)

101 103 105 107
Query latency (ms)

40% of Redshift queries
execute in under 100ms

(b) Distribution of query latency
across the Redshift fleet (0.01% to
99.99% shown).

Figure 1: Distribution statistics from the Redshift fleet

executed queries. This model is very lightweight to ensure negligi-
ble inference latency and memory overhead on the critical path of
query execution. However, the AutoWLM predictor has the follow-
ing downsides. First, due to its lightweight nature and simplified
query featurization techniques, it can produce inaccurate estima-
tions. Second, whenever the customers’ data or query workload
changes, it can provide unreliable predictions until the predictor’s
training set “catches up” with the change. Third, the AutoWLM pre-
dictor requires a sufficient amount of executed queries as training
examples, which may not be available for a new instance, and thus,
it performs poorly in cold start scenarios.

We make two key observations about the Amazon Redshift fleet
that motivate the design of our new exec-time predictor. First, most
queries executed on Amazon Redshift are low latency queries. Many
queries execute in just a few milliseconds, so naively applying
the advanced exec-time predictors in recent literature [21, 35, 52],
which have inference time on the order of 50ms to 500ms, on the
critical path will result in more time being spent on prediction than
on actual query execution. Thus, despite the superior estimation
accuracy of these modern techniques, their inference latency over-
head is not affordable for a lot of Redshift queries. For example,
the predictor proposed in [35] has a prediction latency of 100ms,
which is longer than 40% of queries running in Redshift (as shown
in Figure 1b)! Second, Amazon Redshift customers tend to issue re-
peating queries. On average, more than 60% of the queries executed
within Amazon Redshift have been executed within 24 hours of the
execution of an identical query (as shown in Figure 1a).1

To address the challenges of cold-start prediction, inference time,
and reliable estimation, we implemented a novel hierarchical exec-
time predictor (Stage) with three stages of models illustrated in
Figure 2: (1) a local exec-time cache, which simply memorizes the
latency of recently executed queries and predicts that latency when
the exact query is submitted again, (2) a local lightweight exec-time
predictor with uncertainty measurement that is instance-optimized
to each Redshift customer, and (3) a complex global predictor that is
transferable across all instances in Redshift. When a new query 𝑄
arrives, Stage predictor will first look up𝑄 in exec-time cache and di-
rectly return its prediction based on previously observed exec-time

1These queries are exactly repeated, both in terms of SQL and parameter values,
but the database may have changed in the meantime. Note queries served by the
Amazon Redshift result cache, which caches the results of repetitive queries when the
underlying database has not changed, are not included in Figure 1a.

1

2

3

Exec-time cache (memorized)

Local model (instance-optimized)

Global model (transferrable)

Stage predictor hierarchies Have we seen…
this exact query before?

a similar query on this instance?

anything like this on all instances?

Figure 2: The key components and ideas of Stage predictor.

if𝑄 is present in the cache. If a query𝑄 misses the cache, Stage pre-
dictor will use a lightweight local exec-time predictor (local model)
to predict its exec-time and an uncertainty measurement of the
prediction. The local model utilizes a Bayesian ensemble of light-
weight XGBoost models [31] that can provide a query exec-time
prediction and a reliable uncertainty measure associated with the
prediction with a very low inference latency. While the local model
never learns a fully generalizable model of query performance, it
can accurately predict queries similar to the past-seen queries. Thus,
it can be thought of as a “fuzzy cache”. The prediction uncertainty
can be high whenever the local model does not have enough train-
ing examples, or the input query is very different from previously
seen queries. In this situation, Stage predictor will use the global
model. Inspired by the recent advance in zero-shot cost model [21],
we design our global model as a graph neural network [51, 61] that
takes a physical execution plan of a query as input to predict its
exec-time. There exist tens of thousands of instances in Redshift
with diversified workloads. Thus, we train a single global model
on a diverse set of instances to distill the transferable knowledge
of exec-time prediction across various instances. As a result, it
is capable of accurately and robustly predicting the exec-time of
queries on unseen clusters. The global model will have a non-trivial
inference latency (up to 100ms). Therefore, when used on a critical
path of query execution, it will only be used when the local model
is uncertain about its prediction and believes the query’s exec-time
to be longer than a couple of seconds. Because the global model is
rarely used, the additional inference overhead is amortized out.

We simulate Stage predictor inside the workload manager [50]
of Amazon Redshift in an actual production environment. We con-
duct end-to-end evaluations on the 100 most billed instances in the
month of July 2023 for each of three regions: ‘us-east-1’, ‘us-west-2’,
and ‘eu-west-1’. The results show that Stage predictor can improve
the average query execution latency by 20% on these instances com-
pared to the prior exec-time predictor in Redshift. In addition, we
conduct thorough ablation studies to demonstrate the performance
and reliability of each component of Stage predictor.

To the best of our knowledge, Stage predictor is the first to apply
the idea of a hierarchy of models in exec-time prediction or similar
tasks in DBMS. We believe that Stage predictor points out a way
to practically integrate expensive machine learning models on the
critical path of customer-facing production systems. We list the
main contributions of this paper as follows:

• We describe the use cases and unique challenges of the exec-
time predictor in Redshift (Section 2 and Section 3).

• We design a Stage predictor framework with hierarchical
components for exec-time prediction (Section 4).

• We show a comprehensive evaluation of production data to
showcase the advantages of Stage predictor (Section 5).

• We summarize the lessons learned and point out important
research questions (Section 6).

Stage: Query Execution Time Prediction in Amazon Redshift SIGMOD’24, June 09–15, 2024, Santiago, Chile

Leader Node

Parser

Query
Optimizer

User Query

Execution

Compute Nodes

Workload
Manager

Priority
Assigner

Admission
Controller

Resource
Manager

🔍

DB Stats

Exec-time
Predictor

🤖

Figure 3: Queries’ lifetime inside Redshift.

2 BACKGROUND
In this section, we first give an overview of query processing in
Amazon Redshift, and then we provide a brief survey of related
works on query exec-time prediction.

2.1 Execution time predictor in Redshift
Figure 3 illustrates the lifetime of user-issued queries inside Red-
shift. The queries will first go through a parser and query optimizer
to derive their physical execution plans. Then, the exec-time predic-
tor will take these plans as input and predict their exec-time. Based
on their predictions, the workload manager will make a series of
choices to determine their execution strategy and resource alloca-
tions (see [50] for an overview). Finally, the workload manager will
send the queries out for actual execution.

Importance of exec-time predictor. The predicted exec-time is a
critical component of the workload manager’s decision-making
choices. Based on the prediction, the admission controller in the
workload manager will decide whether a query should wait in
the queue, be pushed to a special short query queue, be executed
on the user’s main cluster, or be sent to a concurrency scaling
cluster. For queries waiting in a queue, each query’s priority is
determined by the predicted exec-time (short queries execute first).
If the workload manager decides to start up a new concurrency
scaling cluster to process an incoming query, the optimal cluster size
will be chosen based on the predicted exec-time on the candidate
cluster sizes. Therefore, the accuracy of exec-time predictor directly
affects query performance in Redshift. For example, if exec-time
predictor is inaccurate, it canmistake a long-running query as short-
running. This long-running query can block the execution of other
short-running queries in the queue, thus severely degrading the
overall query latency. Conversely, if a shorting-running is mistaken
as long-running, it may queue up for minutes before execution.

In addition to the usage of exec-time predictor on the critical
path of query execution, it is also used in several other high-level
optimization tasks. For example, automatic materialized view cre-
ation in Redshift [5] uses the query optimizer to regenerate queries’
execution plans as if certain materialized view exists and then uses

the exec-time predictor to estimate the performance of these plans
to determine the benefits of building such materialized view.

The prior AutoWLM exec-time predictor in Redshift. Here, we
summarize the current status of the exec-time predictor in Redshift
as described in prior work [50], the AutoWLM predictor. First, the
AutoWLM predictor takes a physical execution plan of a query as
input and flattens it into a vector. Then, a lightweight XGBoost
model [8] is used to predict the query’s exec-time. As queries are
executed in each instance, their feature vector and observed exec-
time are added to the XGBoost model’s training set.

The AutoWLM predictor is lightweight to ensure negligible in-
ference latency and memory overhead on the critical path of query
execution. However, due to its lightweight nature and simplified
query functionalization techniques, it can sometimes produce in-
accurate estimations. Worse yet, some customers’ data and query
workload change quickly, thus making the predictions unreliable.
In addition, the AutoWLM predictor requires sufficient executed
queries as training examples, which may not be available for a
new instance (and hence a cold-start problem). Moreover, many
downstream tasks require not just an estimate of exec-time but also
a confidence interval around that estimate for robust optimizations.
For example, the automatic materialized view creation and cluster
scaling model in Redshift need a confidence interval to ensure good
worst-case behavior of the changes in the cluster. The AutoWLM
predictor provides these confidence intervals using simple global
statistics, which leaves room for improvement.

2.2 Related Works
Here, we give a brief overview of previous results in the areas of
uncertainty quantification and query performance prediction.

Uncertainty of XGBoost models. XGBoost is a scalable approach
for building gradient boosting tree models, which achieved state-of-
art performance in a wide range of tasks [8, 45, 54, 67]. Recent work
proposed a Bayesian ensemble of gradient boosting tree models to
estimate the uncertainty of model prediction [31]. We abuse the
term XGBoost models to refer to gradient-boosting tree models
for easier understanding. In a nutshell, this approach separates the
uncertainty into model and data uncertainty. It trains the XGBoost
models with a probabilistic likelihood loss function [48]. Thereafter,
instead of predicting a single name, the XGBoost models will output
a mean 𝜇 and variance 𝜎 for its prediction, where 𝜇 is the model
prediction and 𝜎 captures the data uncertainty. The Bayesian en-
semble of XGBoost models independently trains several XGBoost
models, denoted as𝑀1, . . . , 𝑀𝑘 , each of which will produce a 𝜇𝑖 and
𝜎𝑖 . The variance of all output means 𝜇1, . . . , 𝜇𝑘 captures the model
uncertainty. Finally, the total uncertainty of prediction is the sum
of model uncertainty and data uncertainty. Stage predictor adapts
this approach to build an instance-optimized local predictor. The
details will be discussed in Section 4.3.

Instance-optimized exec-time predictor. Traditional exec-time pre-
dictors generally use hand-derived heuristics and statistical models
to understand the relational operators [1, 15, 27, 62]. There has
been a line of work using machine learning models to predict the
exec-time of a query with superior accuracy over their traditional
counterparts. In general, they featurize the logical or physical query

SIGMOD’24, June 09–15, 2024, Santiago, Chile Wu et al.

plan as a graph and train graph neural networks to map the query
plan to its exec-time [32, 33, 35, 52, 64, 68]. One common drawback
of these approaches is their high inference latency, preventing Red-
shift from integrating them on the critical path of query execution.
Many Redshift queries execute in just a few milliseconds, and the
inference latency of these methods surpasses a large proportion of
queries’ actual execution time.

Zero-shot exec-time predictor. In contrast to instance-optimization,
zero-shot exec-time predictor [21] proposed to train one model over
a diverse set of DB instances, and it can be directly used to predict
the query exec-time on arbitrary unseen DB instances. Specifically,
the zero-shot model gathers data-specific statistics from each DB
instance, such as the number of tuples/columns/pages of each table.
Then, it embeds these statistics into a physical query execution
plan to predict its exec-time. After a heavy offline training process,
the zero-shot model understands the data-independent knowledge
about the system and is transferrable to unseen DB instances. Stage
predictor adapts this approach to build an instance-optimized global
predictor inside Redshift. The details will be discussed in Section 4.4.

Machine Learning for Databases. In addition to exec-time pre-
diction, machine learning has a large impact on optimizing and
managingmodern database systems.Machine learning systems help
enable more effective and automated workload management [34,
50, 66], index recommendation [12], and configuration tuning [2].
Machine learning algorithms help build more fine-grained and
instance-optimized sub-components embedded in existing DBM-
Ses, such cardinality estimation [22, 42, 63, 65, 69], learned query
optimization [32, 33, 56, 60, 64], learned indexes [23, 25, 41], and
learned storage layouts [11, 13].

3 DESIGN PRINCIPLES
Redshift’s query predictor has several design constraints, some
likely to apply to other database engines, while others may be
unique to Redshift. Here, we outline the three most important
design principles behind our Stage exec-time predictor.

First, like many OLAP databases, a large number of queries seen
by Redshift are repeated queries (e.g., dashboard refreshes) – tak-
ing advantage of this repetition is critical to correctly predicting
latency for the majority of queries across the Redshift fleet. Second,
standard point predictions (i.e., mean estimates) are insufficient
for the predictor’s downstream tasks; we require reasonable con-
fidence bounds around each prediction to guarantee worst-case
performance. Third, the inference time of models on the critical
path of query execution must be fast since a large portion of Red-
shift queries execute in only a few milliseconds. Thus, we set out to
design a predictor with inference time on the order of microseconds.

Repeated queries. Many customers use Redshift for analytics
tasks like dashboarding or report generation. As a result, identical
queries are often repeatedly issued to Redshift. Figure 1a shows the
distribution of the percentage of daily unique queries across the
Redshift fleet: a “daily unique” query is a query sent to Redshift
without an identical query being issued within the last 24 hours.
Daily unique queries are thus a good lower bound for the number
of repeating queries that Redshift sees, as monthly or weekly re-
ports will not appear as daily unique queries. We observe that past

performance of a query is a strong predictor of the same query’s
performance later that day, since data distributions are normally
static day-by-day (distribution shifts do occur, but normally not
within 24 hours). Therefore, we want to design our predictor to
take advantage of these repeating queries. This motivates the first
“caching” stage of our predictive model, discussed in Section 4.2.

High-confidence predictions. Many off-the-shelf machine learn-
ing models (e.g., [47]) give predictions as point estimates, or ap-
proximations of the mean. However, Redshift uses predictions in
a number of downstream tasks, including query scheduling and
cluster sizing, so error bounds are essential for ensuring the entire
system maintains good worst-case behavior. Error bounds are espe-
cially important for deciding when to dedicate more inference time
to make a more accurate prediction, which we discuss in Section 4.3.

Low inference latency. Since Redshift needs to estimate the exec-
time for every issued query, it is important that the model’s in-
ference procedure is efficient. Figure 1b shows the distribution of
query latency across the Redshift fleet. Most Redshift queries exe-
cute in under 100𝑚𝑠 . This rules out exclusively using some modern
advanced models, which could have inference times as high as
100𝑚𝑠 [21, 35, 52] (higher than the total query latency for 40% of
the queries!). For Redshift, our new Stage predictor only uses an ex-
pensive neural network model when we have high confidence that a
query will be long (details in Section 4.4). In this case, the additional
inference time is a trivial portion of the overall exec-time.

4 STAGE PREDICTOR
In order to meet the specific needs of Redshift, we design the Stage
exec-time predictor to work in stages. The first stage of the model,
the exec-time cache (Section 4.2), remembers the recently executed
queries. When an incoming query matches a past query, the exec-
time cache makes a prediction. If a match is not found, the query
proceeds to the next stage, the local model (Section 4.3). The local
model is instance-optimized to each user’s clusters (i.e., trained per
cluster). While the local model never learns a fully generalizable
model of query performance, it can accurately predict queries that
are slight modifications of past-seen queries. Thus, it can be thought
of as a “fuzzy cache”. When it cannot make a confident prediction,
the query proceeds to the final stage, the global model (Section 4.4).
The global model is a state-of-the-art graph convolution neural
network trained across the Redshift fleet.

4.1 Overview
We present an overview of Stage predictor’s workflow in Figure 4.
As discussed in Section 2, a user’s queryQ will go through the parser
and query optimizer to derive its physical execution plan before
arriving at the exec-time predictor. Stage predictor first flattens
the physical plan of Q into a 33-dimensional vector. The hashed
vector is checked against the exec-time cache, which records the
observed queries and their actual exec-time in the past. If Q is in
the cache, we return the prediction based on its observed exec-time
(within the Redshift, we find that 60% of the queries will find a
match in the cache). When Q misses the cache, we send Q’s vector
representation to the local model that is trained on executed queries
on this instance, which will output a prediction and uncertainty

Stage: Query Execution Time Prediction in Amazon Redshift SIGMOD’24, June 09–15, 2024, Santiago, Chile

Exec-time
cache

If seen ✅
Output: exec-time prediction

If not
 ❌

Local XGBoost
Bayesian ensemble

If short or certain ✅

If not
 ❌

Global GCN exec-
time predictor

Physical
Plan

Vector Rep.User
query🔍

Query
Optimizer
🤖

DB Stats

Figure 4: Workflow overview of the Stage predictor: Queries
are first planned by the query optimizer and then featur-
ized into a vector. If the exec-time cache has a match for the
feature vector, the cached exec-time will be returned. Oth-
erwise, the feature vector will go to the local model. If the
local model predicts that a query is short-running or if it is
highly confident, its prediction will be returned. Otherwise,
the global model will use the original physical plan and stats
from the user’s specific database to make a prediction. After
execution, the pair of vector representation and exec-time is
added to the cache and local training data (not shown).

associated with it. If the local model thinks that Q is short-running,
or the local model is highly confident about its prediction, Stage
predictor directly returns the local model’s prediction.

Finally, when the local model is uncertain about Q, the state-of-
the-art graph convolution neural network (global model) is used.
The global model takes the physical plan of Q as input and under-
stands the complicated interactions between operator nodes in this
plan tree. A single global model is trained on all executed queries
from a diverse set of instances and is shared across the entire Ama-
zon Redshift fleet. As a result, the global model is more robust and
accurate on the queries that the local model is uncertain about. The
downside to the global model is that the global model has a high
inference time (e.g., up to 100ms). However, since it is only used
when local model is uncertain and thinks the query is long-running,
it is rarely used, so the additional time is amortized out.

Advantages. The Stage predictor designs a systematic approach
to use these models that best leverages the optimality (exec-time
cache), instance-optimization (local model), and transferrable knowl-
edge about Redshift (global model). By combining the merits of all
these models with different characteristics, the Stage predictor is
able to reliably achieve high prediction accuracy at a (amortized)
negligible inference latency. Conceptually, the Stage predictor ef-
fectively addresses the downside of the prior AutoWLM predictor
inside Redshift. In particular, the Stage predictor is able to sig-
nificantly improve prediction accuracy without adding too much
inference latency. In addition, the Stage predictor has reliable per-
formance, especially when used on a new instance with insufficient
training queries or instances with changing data and query work-
load. For those instances, the uncertainty of local model’s prediction
will be high, and we can rely on the more robust global model. At
last, the Stage predictor can provide probabilistic distribution or
confidence interval for the predicted exec-time to enable robust
decisions making of many downstream tasks.

4.2 Exec-time Cache
The exec-time cache is able to output near-optimal prediction with
near-zero inference latency for repeating queries that were recently
observed (this is 60% of queries on average across the Redshift fleet).
In the following, we first explain the cache’s keys and values, the
procedure to make predictions, and the eviction policy of entries
when the cache is full. Then, we discuss several optimizations.

Cache keys and values. Similar to AutoWLM predictor [50], the
first step of the Stage predictor is to flatten a physical plan tree as
a vector. We traverse the plan tree, collect operator nodes of the
same type, and sum up their estimated cost and cardinality. We
also add features such as query type (e.g., SELECT, DELETE) and end
up with an 𝑛-dimensional vector representation of the physical
plan tree. The exec-time cache uses this vector for each query as
key and maps the actual exec-time of this query after execution as
values. For the same query that executes multiple times, the cache
stores all their observed exec-times as values. It is worth noticing
that in some very rare cases, two different plan trees may result
in the same vector representation, which means that the exec-time
cache cannot distinguish them. However, in those cases, their query
plans should be very close to each other, and thus, we assume their
exec-times should be similar as well.

Exec-time prediction. Whenever a new query arrives thatmatches
a cached key, the exec-time cache is able to predict its exec-time
based on its observed exec-times 𝑡1, . . . , 𝑡𝑘 . Since variance exists in
these observed exec-times due to different system loads when the
same query is being executed, one might think to use the mean 𝜇 of
these exec-times as a prediction to increase prediction robustness.
However, since the underlying table stats of Redshift may not be
up-to-date, the same query executed at different time may access
slightly different data, leading to different exec-times. In this case,
𝜇 will contain outdated exec-times, and the most recently observed
exec-time 𝑡𝑘 captures the freshness of data. Therefore, we design
a simple heuristic to predict the exec-time: 𝜇 × 𝛼 + 𝑡𝑘 × (1 − 𝛼).
This heuristic can capture both the robustness and the freshness of
data. The value of 𝛼 is a hyperparameter that balances the average
exec-time against the most recently observed exec-time. Empiri-
cally, 𝛼 = 0.8 works well for the Redshift fleet. In the future, we
plan to design more principled approaches for prediction based on
observed exec-time, such as time series prediction.

Eviction policy. In order to maintain efficient memory usage and
fast look-up speed, we need to ensure the number of cached queries
does not grow unbounded. Therefore, whenever the number of
cached queries surpasses a certain threshold, exec-time cache will
evict the least updated queries from the cache. In practice, this can
be implemented by maintaining a sorted list of dates for each query
at which the most recently observed exec-time is collected and
removing the query with the oldest date from the exec-time cache.

Optimization 1: hash value replacement. As described above, the
hash table stores query feature vectors as keys, so whenever an
incoming query arrives, its entire query feature vector needs to
be compared element-by-element with the cached vectors. We can
optimize this vector-vector comparison by storing the hash value of
the feature vector as the key. This, in theory, may lead to collisions,

SIGMOD’24, June 09–15, 2024, Santiago, Chile Wu et al.

as any query feature vectors with matching hash values will be
treated as identical, but we observed zero hash collision for all
queries in the top 200 instances in the Amazon Redshift fleet. This
optimization removes the costly vector-vector comparison and
significantly reduces the size of the hash table keys.

Optimization 2: running mean and variance. As described above,
the values in the hash table are lists of past query latencies. This
gives us some design flexibility, as we can compute any summary
statistic we want from the history (e.g., mean, median, quantiles).
However, if we know we are only interested in the mean, variance,
and the most recently observed exec-time, we can replace each
query history with a running mean and variance. Using Welford’s
algorithm [58], this only requires storing 4 values per hash table
entry, reducing both the in-memory size of the cache and the cache’s
lookup time (due to reading fewer in-memory values).

4.3 Instance-optimized local model
In this section, we first describe the implementation of our local
model, and then conceptually justify the design choices for local
model in Redshift and compare it with other potential alternative
designs. At last, we explain how to leverage the exec-time cache to
build an effective and efficient training pipeline for local model.

Bayesian ensemble of XGBoost models. As mentioned in Sec-
tion 2.2, we adapt and implement the Bayesian ensemble of XGBoost
models [31] as our instance-optimized local model with a reliable
uncertainty measurement. Recall that this ensemble independently
learns 𝐾 XGBoost models, each of which takes the 33-dimension
vector representation of query as input and estimates a mean 𝜇𝑘
and variance 𝜎2

𝑘
of a query’s exec-time. The final prediction of

exec-time 𝑦 is given by the average of each model’s prediction in
Equation 1. The total uncertaintyV[𝑦] (i.e., variance of prediction)
of this prediction 𝑦 is a summation of estimated model uncertainty
and estimated data uncertainty as shown in Equation 2.

𝑦 =
1
𝐾

𝐾∑︁
𝑘=1

𝜇𝑘 (1)

V[𝑦]︸︷︷︸
Prediction uncertainty

=
1
𝐾

𝐾∑︁
𝑘=1

(𝑦 − 𝜇𝑘)2︸ ︷︷ ︸
Model uncertainty

+ 1
𝐾

𝐾∑︁
𝑘=1

𝜎2
𝑘︸ ︷︷ ︸

Data uncertainty

(2)

Justification of the local model’s design choices. The model un-
certainty is estimated as the variance of each XGBoost model’s
prediction 𝜇𝑘 . Since each model is independently trained, when
local model does not have enough training data or if the incoming
query is different from the training queries, the models will have
diverse interpretations of this query. Thus, the variance of their
prediction will be high in this scenario, and the global model could
come to the rescue.

The estimated data uncertainty can capture the inherent nois-
iness in the labels and training features themselves. In Redshift,
the same query executed at a different time can have different
exec-times (i.e. noisiness in labels) due to different system loads
and concurrency state. Meanwhile, the input to local model also

contains high noise. Specifically, the 33-dimensional vector feature
does not fully capture all information of the physical query plan
tree (e.g., tree structure, missing node types, and Redshift’s cardi-
nality estimation error). When a query plan is complicated with
many joins, the vector feature tends to be less representative and
the local model will have a high data uncertainty. In this case, the
global model will take the entire physical execution plan as input
and will have a better performance.

Therefore, using the Bayesian ensemble of XGBoost models as
the local model captures two sources of uncertainty that could result
in high prediction errors in Redshift. There exists a line of works in
the machine learning domain for quantifying the prediction uncer-
tainty, which are less optimal to apply inside Redshift. Specifically,
uncertainty measurement using deep learning models [16, 26, 59]
are not practical in Redshift due to their large inference latency.
The popular lightweight alternatives for uncertainty measurement
normally only focus on one source of uncertainty. For example,
uncertainty in random forest regression [10, 39], quantile regres-
sion forests [36], and one-class support vector machine for outlier
detection [3, 28] mainly focus on quantifying the model uncertainty
but not the data uncertainty. Whereas, another line of works on
probabilistic prediction [14, 18, 44, 49] and probabilistic program-
ming [6, 19] mainly focus on understanding the uncertainty in data
itself rather than quantifying the model uncertainty.

It is worth noting that using the Bayesian ensemble of XGBoost
models as local model in Redshift also involves minimal engineering
effort since the prior AutoWLM predictor inside Redshift already
uses XGBoost. In order to build the new local model, we only need to
change the loss function of the XGBoost model and independently
train multiple such models.

Local model training optimization. The training process of the
local model needs to maintain a diverse set of training queries to
train effective local models. At the same time, it also needs to ensure
a low memory and computation overhead of training because the
training process is conducted locally on the customers’ database
clusters. Therefore, we tailor the training process based on the
unique characteristics of Redshift queries.

We collect the observed features and latency of executed queries
into a training query pool. Naively storing every query execution
result in the training pool has the following three issues: (1) the size
of the training pool would grow unbounded, (2) the training pool
would become “polluted” with repetitive queries that the exec-time
cache will take care of anyway, and (3) the training pool will have
more short queries than long queries, skewing prediction accuracy
for longer (and often more important) queries.

Bounding the size. To resolve the first issue of the training pool,
we cap the total number of queries in the training query pool.
Whenever the number of queries exceeds a certain threshold, the
training pool will evict the oldest observed queries.

Dealing with repeats. Recall that a large amount of queries in
Redshift repeat themselves, which will significantly reduce the
diversity of queries in the training pool. Besides, these repeating
queries will be captured by the exec-time cache, so overfitting these
queries may degrade local model’s generalizability to other queries.
Therefore, we deduplicate the repeating queries in the training pool.

Stage: Query Execution Time Prediction in Amazon Redshift SIGMOD’24, June 09–15, 2024, Santiago, Chile

Type: Aggregate
Cost: 1671.5

Cardinality: 80
Width: 16

S3 format: Null
Table rows: Null

Distributed
hash join

Distributed
 hash join

Hash

1. Node embedding

2. Graph convolution
 message passing

3. Exec-time prediction

+
15.3s

Sequential
Scan

Sequential
Scan

Sequential
Scan

Figure 5: Global model featurization and architecture.

We leverage the exec-time cache to implement this data dedupli-
cation efficiently. Specifically, for each executed query, we hash
its observed features and check against the exec-time cache. If the
query misses the cache, we add it to the training pool.

Duration diversity. Next we address the third issue, which is that
the distribution of query latencies is skewed. Most of the Redshift
queries execute in less than a couple of seconds, so our training pool
can be filled by short-running queries. In this case, the local model
will have catastrophic performance for longer-running queries.
Therefore, we partition the training pool into several query exec-
time buckets (e.g., 0 − 10𝑠 , 10 − 60𝑠 , and 60𝑠+) and assign a cap for
each bucket to ensure the query diversity in the training pool.

4.4 Transferrable global model
Inspired by recent work in zero-shot cost model [21], we design
the instance-independent featurization of Redshift query plans,
allowing us to map query plans from various customers’ instances
to a unified space. As a result, we can collect a diverse set of training
queries from a large amount of Redshift instances to jointly train
one global model that is able to make robust predictions for all
instances, including the unseen instances. The global model uses a
graph convolutional network (GCN) [24] architecture to understand
the query plan of Redshift and map it to its exec-time.

Query plan featurization. We run the fleet sweep to gather the
logs (i.e., STL_EXPLAIN table) on the physical execution plans of
executed queries from the customers’ Redshift instances. Then,
we parse the information from the logs into a tree data structure
representing each query plan as shown in Figure 5. Each node
in the tree represents a physical operator (e.g., “sequential scan”,
“hash”, “materialize”, “distributed hash join”, “aggregate”, “order by”),
and we featurize it as its operator type, estimated cost, estimated
cardinality, tuple width, S3 table format (e.g., “Parquet”, “OpenCSV”,
“Text” or “Local” if the table is stored locally), and number of rows
in the table. An example of node features is shown in red in Figure 5.
It is worth noticing that 90 unique operator types exist in Redshift,

so we represent the node operator type as a 90-bit one-hot vector.
Furthermore, we set the S3 table format and table rows features to
“Null” if the operator is not directly operating on a base table (e.g.,
not a scan operation).

Model architecture. Our global exec-time predictor contains three
components: node embedding, graph convolution message passing,
and final exec-time prediction. First, the features of all nodes are
embedded with a multi-layer perceptron (MLP) to a feature vector.
One example is shown in blue color in Figure 5. Then, we use a
GCN model to perform message passing between nodes to aggre-
gate information and understand operator interactions in Redshift.
Some message passing directions are shown in green in Figure 5.
Specifically, GCN consists of several layers of message passing. In
the first layer of GCN, each node combines its own embedded node
features with those of its children and transforms them into a new
node feature. This feature combination process is controlled by
learnable weights. The following GCN layers will repeat the same
process on the transformed features of each node from the previous
layer. After several GCN layers, information on all nodes will be
aggregated to the root node, and a vector representation of the
entire query plan will be outputted. The GCN message passing is
capable of understanding the complex operator dependencies and
interactions, as shown by the zero-shot cost model [21]. At last, the
final vector representation output by GCN will be concatenated
with a system feature vector, which includes a summarization of
the query plan, Redshift instance type, number of Redshift nodes,
memory size, and number of concurrent queries. The system fea-
ture vector contains factors that may affect query exec-time other
than the query execution plan itself. The concatenated feature will
be sent to an MLP to estimate the exec-time of this query.

Our global GCN model is trained on a diverse set of hundreds of
Redshift instances, each with more than 10,000 queries.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of the Stage predictor
and compare it against the prior AutoWLM predictor in Redshift
on real-world data. We first explain the experimental setting in
Section 5.1 and then evaluate the following questions:

• End-to-end (Section 5.2):Howmuch practical gain can the
Stage predictor achieve in terms of improving end-to-end
query execution latency in Redshift?

• Accuracy (Section 5.3): How accurate is the Stage predic-
tor? What is its model size and inference latency?

• Ablation (Section 5.4): How accurate and robust is each
hierarchy of Stage predictor individually?

5.1 Experimental Settings
Real-world workloads. Since we are primarily concerned with the

performance of the Stage predictor on the Redshift fleet, we evaluate
the Stage predictor on query logs of real Redshift customers. We
select the top 100 most-billed instances in the month of July 2023
from Redshift in each of the three regions: ‘us-east-1’, ‘us-west-
2’, and ‘eu-west-1’. We select all user-executed queries on these
instances from ‘July 28th, 2023’ to ‘August 11th, 2023’, resulting
in a total of roughly 30 million queries. Unless specifically stated
otherwise, all our experiments are conducted on these queries.

SIGMOD’24, June 09–15, 2024, Santiago, Chile Wu et al.

Local environment. We train and evaluate the performance of
our Stage predictor and the baseline (i.e., AutoWLM predictor in
Redshift) on one AWS ‘m5.4xlarge’ machine with 64 GB memory, 16
vCPUs, and Intel Xeon Platinum 8175 processor. It is worth noting
that the offline training of our global model is conducted on two
AWS ‘p3.8xlarge’ machines, each with 244 GB memory, 32 vCPUs,
and 4 Nvidia tesla v100 GPU. We only leverage GPU to accelerate
the training of the global model, not the cache or local model.

Model training. We simulate the exact training and testing pro-
cedure as in real Redshift deployment to evaluate the performance
of Stage predictor and the baseline. Specifically, on each cluster, we
replay all the queries sequentially based on their logged execution
start time. In addition, we randomly sample 100 training instances
and use three weeks of user-executed queries on all instances to
train our global model. These training instances do not overlap with
the evaluation instances. Unless specified otherwise, all predictions
used for evaluation are derived from the aforementioned procedure.

Hyper-parameters. Our Stage predictor contains a set of hyper-
parameters that are relatively easy to tune. We describe each of
the hyper-parameters and its value as follows. Each value was de-
termined via tuning on data prior to our test workload (i.e., data
used to select hyperparameters is completely separate from the
evaluation dataset). For the exec-time cache, we set the cache size
to 2,000 (i.e., it can only keep 2,000 unique queries before eviction).
For the local model, we used the CatBoost Python package [48] to
train 10 XGBoost models independently. For each XGBoost model,
we set the number of estimators as 200, the max depth as 6, and the
number of parallel trees as 1. When training the XGBoost models,
we randomly choose 20% of the training data as a validation set for
early stopping to prevent overfitting. We note that the AutoWLM
predictor baseline in Redshift uses exactly the same hyperparam-
eters for the XGBoost model. The differences between our local
model and the baseline are (1) we train 10 models instead of one; (2)
we use a log-likelihood loss function instead of the mean absolute
error as used by the baseline. Both changes are necessary to provide
an uncertainty measure of prediction. For global model, we use a
directed GCN with the hidden dimension size 512, 8 layers of graph
convolution, and 0.2 weight dropout ratio.

5.2 End-to-end Evaluation in Redshift
The most straightforward and important approach to evaluate the
effectiveness of Stage predictor is to test how much it can improve
the end-to-end query execution latency inside Redshift. It is worth
noticing that query latency is different from query exec-time —
latency includes the scheduling time and wait time of a query,
whereas exec-time excludes those factors.

End-to-end simulation. To evaluate the impact of the Stage predic-
tor on end-to-end performance, we simulate the Redshift workload
manager [50] using the Redshift team’s internal tools. The simula-
tor replays an existing user workload using the Stage predictor. The
simulator then computes the expected query latency of each query
in the workload. More accurate exec-time predictions will cause the
workload manager to make better scheduling decisions and thus
improve query latency. It is worth noticing that in this simulation,
exec-time prediction accuracy only affects query wait time but not

44
.4
%

20
.3
%

0.
0%

0.
0%

16
.4
%

59
.8
%

0.
0%

14
.9
%

54
.5
%

Figure 6: End-to-end performance in terms of query latency
of different exec-time predictors inside Redshift. We listed
the percentage improvement over the AutoWLM predictor.

actual query exec-time: that is, the query execution time is assumed
to be identical to when the query was actually executed by the cus-
tomer. This could lead to some simulation inaccuracies since the
workload manager’s decisions can impact query execution time (i.e.,
resource allocation). However, we have verified through various
other experiments conducted internally by Redshift teams on the
workload manager that improvements in the simulation results
accurately reflect actual query execution latency in production. In
other words, previous improvements to Redshift’s workload man-
ager were tested using this simulator, and the benefits seen in the
simulation were realized in actual deployment.

We chose the workload manager simulation as our end-to-end
evaluation for two reasons. First, we cannot directly compare the
Stage predictor with the AutoWLM predictor in real production
environments. This is because users execute their queries once and
once only, so the workload manager either uses the Stage predictor
or the AutoWLM predictor to get the actual query execution latency.
Counterfactually “replaying” the workload via a simulator is the
only way to measure possible improvements. Second, other tasks
exist in Redshift as sub-routines (e.g., automatic materialized view
creation). However, those tasks are not on the critical path of query
execution, so they can only indirectly reflect the query execution
latency changes. Thus, we cannot explicitly evaluate the benefit of
Stage predictor on those tasks.

Performance comparison. We conduct the simulation experiment
using three exec-time predictors: Stage predictor, the AutoWLM
predictor, and the actual exec-time (Optimal). The Optimal feeds
the observed exec-time to the workload manager, representing the
optimal performance an exec-time predictor can ever achieve.

The overall end-to-end query execution latency on all top 100
most-billed instances in three regions (roughly 30 million queries)
are shown in Figure 6. We observe that the Stage predictor signifi-
cantly improves over the AutoWLM predictor: the 20.3%, 16.4%, and
14.9% query execution latency improvement on average, median,
and tail, respectively. This improvement purely results from a more
accurate exec-time predictor. However, we observe that Optimal
has a significantly better performance than Stage predictor: 44.4%,
59.8%, and 54.5% query execution latency improvement on average,

Stage: Query Execution Time Prediction in Amazon Redshift SIGMOD’24, June 09–15, 2024, Santiago, Chile

0 25 50 75 100
Clusters (%)

-40

-20

0

20

40

60

80

100

M
ea

n
La

te
nc

y
Im

pr
ov

em
en

t (
%

)

Stage Predictor
Optimal

Figure 7: End-to-end query latency improvement over Au-
toWLM predictor on each top instance. We sort the instances
based on the improvement the optimal predictor achieves.

median, and tail, respectively. This suggests that there still exists a
large room for improvement, and further improving the accuracy
of exec-time predictor in Redshift can be fruitful.

In addition, we analyze the average query latency improvement
of the Stage predictor over the AutoWLM predictor on each instance
in Figure 7. For comparison, we also plot the optimal predictor’s
improvement and sort the instances based on this value. We can
see that the Stage predictor is able to improve the average query
latency for most of the instances. However, there are regressions:
on less than 10% of the instances, Stage predictor actually does
worse than the AutoWLM predictor. There are several possible
explanations. First, the AutoWLM predictor does occasionally make
better predictions than the Stage predictor on a small portion of
queries, which could have an impact on the workload manager.
Second, both the Stage predictor and the AutoWLM predictor have
erroneous predictions, as detailed in Section 5.3, and there is an
asymmetry in prediction errors. For example, for a query with
exec-time of 30s, the Stage predictor may predict it to be 5s, thus
sending it to the short-running queue, and the AutoWLM predictor
may make a worse prediction of 900s, thus sending it correctly to
the long-running queue. In this scenario, although Stage predictor
is more accurate, it makes the wrong decision. Third, due to the
algorithmic design of workload manager [50], there will be edge
cases when perfect prediction does not lead to the best end-to-
end query latency. This also explains why the Stage predictor can
sometimes outperform the optimal predictor.

5.3 Stage Predictor Accuracy
We show the prediction accuracy of the Stage predictor and the
AutoWLM predictor on all top 100 most billed instances from three
regions in Redshift, with a total of 27, 441, 359 queries. The accu-
racy is evaluated using absolute error, that is, |actual exec-time −
predicted exec-time| in seconds. We show the accuracy comparison
in Figure 8 and report the details of mean (MAE), median (p50-AE),
and tail (p90-AE) absolute error of these queries in Table 1. Stage
predictor is able to achieve a median absolute error of 0.67, sug-
gesting that for 50% of the query, Stage prediction is within 0.67𝑠 of
actual execution time. Overall, Stage predictor achieves more than
2x more accurate prediction than the AutoWLM predictor.

M
ea

n
A

bs
ol

ut
e

Er
ro

r (
s)

Query execution time range

Figure 8: Prediction accuracy of stage predictor compared to
the AutoWLM predictor in Redshift.

Query Exec-time # Queries Stage predictor AutoWLM predictor
MAE P50-AE P90-AE MAE P50-AE P90-AE

Overall 27,441,359 7.76 0.67 9.39 17.87 2.03 23.68
0s – 10s 22,015,851 3.74 0.31 7.43 9.04 1.11 14.44
10s – 60s 5,085,965 8.53 2.60 13.68 32.83 10.02 51.34
60s – 120s 163,913 50.11 24.15 85.00 91.63 31.04 113.8
120s – 300s 83,590 126.4 70.46 206.4 181.9 84.55 255.4

300s+ 92,041 744.4 235.7 1496 990.1 289.7 1922
Table 1: Prediction accuracy (absolute error in seconds) of
stage predictor and the AutoWLM predictor.

Query Exec-time # Queries Stage predictor AutoWLM predictor
MQE P50-QE P90-QE MQE P50-QE P90-QE

Overall 27,441,359 54.57 1.60 19.00 171.8 4.08 135.7
0s – 10s 22,015,851 43.87 1.92 26.25 97.41 6.38 173.1
10s – 60s 5,085,965 71.66 1.18 2.16 441.4 1.77 6.39
60s – 120s 163,913 251.9 1.38 4.57 633.2 1.51 4.97
120s – 300s 83,590 307.4 1.59 5.83 548.1 1.71 6.61

300s+ 92,041 1084 1.48 6.12 1922 1.58 10.00
Table 2: Prediction accuracy (in Q-error) of stage predictor
compared to the AutoWLM predictor.

To dive deep into the results, we provide a detailed accuracy
comparison on queries with different exec-time ranges in Table 1. It
is very important to analyze the prediction performance of queries
with different exec-time ranges because the workload manager of
Redshift schedules queries into execution queues and assigns prior-
ity according to the predicted exec-time. Specifically, we see that
Stage predictor is able to achieve more than 3𝑥 better prediction
on queries with less than 60s exec-time. We additionally provide
the same table on another widely-used metric for relative error: Q-
Error [40], that is,𝑚𝑎𝑥{𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑/𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒/𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑} in Table 2.
The minimal value Q-Error can take is 1, and closer to 1 implies
a more accurate prediction. We observe a roughly similar pattern
that the Stage predictor significantly outperforms the AutoWLM
predictor on 60s exec-time. However, it achieves mild improve-
ment on the queries with more than 60s exec-time, possibly due
to the following reasons. First, the distribution of query exec-time
is heavily skewed and only 1% of the queries execute longer than
60s. Therefore, both Stage predictor and the AutoWLM predictor
don’t have enough training data on the long-running queries and
yield worse performance. Second, the long-running queries are
inherently more difficult to predict because of a larger noisiness
in the label. We observe in Redshift that the exec-time of the same
query repeatedly executed several times can range from just tens of

SIGMOD’24, June 09–15, 2024, Santiago, Chile Wu et al.
Av

er
ag

e
m

em
or

y
us

ag
e

Average inference latency
Figure 9: Average inference latency and average memory
usage overhead of different exec-time predictors.

seconds to several hundred seconds. This scenario is largely due to
different system loads, cache states, and the number of concurrency
queries in Redshift during the query execution. Unfortunately, our
exec-time predictor cannot yet take that into account. In future
work, we plan to design better exec-time predictors that can take
system statistics into account to explain the variance in labels.

In addition to accuracy, we provide the average inference la-
tency and memory usage overhead of Stage and AutoWLM pre-
dictor along with each component of Stage predictor in Figure 9.
It is worth noticing that since different instances of Redshift are
likely to have different hardware types, the numbers in Figure 9 are
rough estimations rather than actually measured inference latency
and memory usage. Although Stage predictor (red dot) has a larger
inference latency and memory overhead than the AutoWLM predic-
tor (blue square), it is still within a practical range: sub-millisecond
inference latency, a few hundred kb memory usages. Specifically,
the exec-time cache (yellow dot) is able to make an inference in
just a couple of microseconds. The local model (green dot) trains 10
XGBoost models as opposed to one in AutoWLM predictor, so it is
generally 10𝑥 larger and slower to make inferences than AutoWLM
predictor. The global model (purple dot) is a deep-learning-based
model, which is roughly two of a magnitude larger than other pre-
dictors. However, since the deep learning model is rarely used (3%
of the time), its inference latency is amortized out. Furthermore,
we do not include the memory overhead of global model into Stage
predictor because it will eventually be deployed as a serverless
Lambda function that every Redshift instance can invoke to avoid
local memory and CPU overhead.

5.4 Ablation study
In this section, we first provide detailed accuracy analysis on each
component of Stage predictor: exec-time cache, local model, and
global model. Then, we study how reliable is the uncertainty mea-
sure of our local model.

Accuracy of exec-time cache. We find that 16, 963, 658 out of the
27, 441, 359 queries in these instances (61.8%) repeat themselves and
can be directly predicted by exec-time cache. As shown in Table 3,
exec-time cache overall achieves a significantly better prediction ac-
curacy than the AutoWLM predictor. The advantages are apparent
since the AutoWLM predictor (XGBoost model) is trained on the
executed queries’ exec-time as ground truth, which is captured in
the cache. Therefore, in theory, the locally trained model can never

Query Exec-time # Queries Exec-time cache AutoWLM predictor
MAE P50-AE P90-AE MAE P50-AE P90-AE

Overall 16,963,658 4.83 0.56 4.66 15.04 3.00 20.35
0s – 10s 12,616,915 1.82 0.16 2.74 7.40 1.20 15.96
10s – 60s 4,212,128 4.55 2.27 6.61 23.15 7.57 24.26
60s – 120s 74,604 30.87 9.80 67.93 43.88 23.29 77.2
120s – 300s 27,185 115.8 72.78 197.8 117.4 88.13 205.6

300s+ 32,826 764.3 193.4 1524 1046 284.4 2045
Table 3: Prediction accuracy (absolute error in seconds) of
exec-time cache and AutoWLM predictor in Redshift.

Query Exec-time # Queries Local model AutoWLM predictor
MAE P50-AE P90-AE MAE P50-AE P90-AE

Overall 10,477,701 21.48 4.16 34.88 19.06 4.32 29.27
0s – 10s 9,398,936 13.76 3.27 30.88 10.94 3.60 23.41
10s – 60s 873,837 35.63 16.47 87.06 32.63 12.90 54.36
60s – 120s 89,309 77.69 37.61 137.6 69.65 36.04 93.40
120s – 300s 56,405 140.1 72.03 230.5 120.7 76.75 195.1

300s+ 59,215 840.3 267.6 1652 852.3 276.0 1729
Table 4: Prediction accuracy (absolute error in seconds) of
the local model and AutoWLM predictor in Redshift.

outperform the exec-time cache. However, it is worth noticing that
exec-time cache does make significant errors (in terms of absolute
error) because these repeating queries are executed at different sys-
tem loads, buffer pool states, and concurrency conditions, making
it extremely hard to predict the exec-time at a different state accu-
rately. We find roughly the same pattern for prediction accuracy
comparison in terms of Q-error, so we omit all results on Q-error
due to space limitations.

Accuracy of local model. We evaluate and compare the perfor-
mance of the local model to the AutoWLM predictor in Redshift
on the 10, 477, 701 out of the 27, 441, 359 queries that miss the exec-
time cache (38.2%). Recall that there are only two differences be-
tween local model and AutoWLM predictor: 1) local model inde-
pendently trains 10 XGBoost model whereas AutoWLM predictor
only uses one; 2) the XGBoost model in local model is trained with
log-likelihood loss whereas AutoWLM predictor is trained with the
absolute error. We observe in Table 4 that local model is slightly
worse than the AutoWLM predictor because the AutoWLM predic-
tor is directly trained to optimize the absolute error, which is the
evaluation metric. As a future work, we plan to lower the gap in
performance difference between the two by adding an XGBoost
model trained with absolute error into the Bayesian ensemble of
XGBoost models in local model.

Accuracy of global model. The global model is trained on a di-
verse set of instances and evaluated on the top-billed instances with
unseen queries. We first compare the performance of global model
against the local model on all queries that miss the cache in Ta-
ble 5. We observe that the local model has a better performance
than global model, especially on long-running queries. This was
surprising to us because it runs against the common wisdom that
“more data makes a better model”: in this case, the global model is
trained on significantly more data than the local model. However,
the local model’s data is much closer in distribution to the test data,
and the local model is able to win out. While there are some specific
databases where the global model outperforms the local model, the

Stage: Query Execution Time Prediction in Amazon Redshift SIGMOD’24, June 09–15, 2024, Santiago, Chile

Query Exec-time # Queries Global model Local model
MAE P50-AE P90-AE MAE P50-AE P90-AE

Overall 10,477,701 23.82 6.42 29.53 21.48 4.16 34.88
0s – 10s 9,398,936 12.61 8.48 20.96 13.76 3.27 30.88
10s – 60s 873,837 39.42 17.92 67.58 35.63 16.47 87.06
60s – 120s 89,309 166.1 111.9 204.6 77.69 37.61 137.6
120s – 300s 56,405 366.5 243.9 519.9 140.1 72.03 230.5

300s+ 59,215 1763 701.5 3540 840.3 267.6 1652
Table 5: Prediction accuracy (absolute error in seconds) of
the global model compared to the local model on all queries
that miss the exec-time cache.

Query Exec-time # Queries Global model Local model
MAE P50-AE P90-AE MAE P50-AE P90-AE

Overall 361,752 134.8 10.09 164.1 164.7 25.21 196.8
0s – 10s 167,617 9.45 3.90 20.37 50.77 18.82 113.4
10s – 60s 91,714 33.31 48.46 67.58 62.12 20.14 113.0
60s – 120s 37,539 64.72 35.78 92.89 82.03 34.27 151.2
120s – 300s 31,508 230.7 90.51 309.9 235.5 82.14 326.6

300s+ 33,343 1033 423.8 2011 1046 391.9 1712
Table 6: Prediction accuracy (absolute error in seconds) of
global model compared to local model on uncertain queries.

overall trend favors the local model, which might be evidence that,
in the context of query performance prediction, better data beats
bigger data. In our opinion, this casts serious doubt on the premise
that cloud database operators can train effective “cross-customer”
models that are better than instance-optimized models.

One possible explanation for the relatively poor performance
of the global model is a lack of model capacity: could a sufficiently
large model learn the latent information hidden in each database
instance with enough training data? While we are unable to an-
swer this question conclusively, we did find several examples of
nearly identical query plans with nearly identical cost and cardi-
nality estimates from different customers with drastically different
performances. No amount of data can resolve this issue, as there are
two nearly identical training inputs with wildly different desired
outputs. Thus, database-specific features may be needed for a global
model to learn to differentiate between these pairs.

For the context of this work, we primarily care about the per-
formance of the global model when the local model is uncertain
and thinks the query is long-running. We evaluate those queries in
Table 6. In this scenario, global model is able to achieve a better
result than the local model. This suggests that global model is able
to provide more robust and reliable prediction whenever the local
model is uncertain. However, we barely observe improvement on
long-running queries (larger than 120s) over local model because
those queries are very sparse in each instance and may contain
instance-specific characteristics that the global model cannot under-
stand. Overall, we do see a significant performance drop for local
model itself, shifting from testing on all queries to only uncertain
ones. This implies that our uncertainty measurement for local model
is reliable. We provide a more exhaustive analysis of the reliability
of this uncertainty measurement as follows.

Uncertainty measurement in local model. We use the well-
established scoring rule: prediction-rejection ratio (PRR) [30, 31] to
evaluate how good is the uncertainty measurement of local model.

Prediction uncertainty Proportion of queries

Cu
m

ul
at

iv
e

AE
 /

To
ta

l A
E

A
bs

ol
ut

e
pr

ed
ic

tio
n

er
ro

r

Prediction uncertainty

C
um

ul
at

ed
 A

E
/ T

ot
al

 A
E

Proportion of queries

Oracle
Uncertainty
Random

Figure 10: Illustration of PRR calculation on queries from
an example instance, whose PPR score is 0.9.

PRR Score
N

um
be

r o
f i

ns
ta

nc
es

PRR Score

Average
Median

Figure 11: Uncertainty quality of local model (prediction
rejection ratio) distribution for all top instances.

PRR quantifies the rank correlation between the predicted uncer-
tainty and the observed prediction error for each query in one
instance. To better explain how PRR works, we provide an example
in Figure 10. On the left of Figure 10, we show 2000 testing queries
from one instance and plot their uncertainty estimated by the lo-
cal model on the x-axis against the observed absolute estimation
error on the y-axis. We can see a statistically significant positive
relation between these two values. On the right of Figure 10, we
show the calculation of PRR for this instance. Specifically, we first
sort/rank all queries based on their observed absolute estimation
error (“Oracle”) in descending order and plot the proportion of
cumulative error (i.e., cumulative error/total error) as shown in
the red curve in this figure. Then, we sort/rank all queries based
on their prediction uncertainty in the blue curve and randomly
sort all queries as in the black curve. Ideally, if our uncertainty has
a perfect correlation with the actual error, the blue curve should
overlap with the red curve. Therefore, the “closer” blue curve is
to the red curve, the more reliable our prediction uncertainty is.
We can compute the area under the curve (AUC) between red and
black curves as (AUC_Oracle) and the AUC between blue and black
curves as (AUC_Stage). The PRR score is quantitatively defined as
the ratio AUC_Stage/AUC_Oracle, between 0 and 1.

We calculate the overall PRR score for all top instances and plot
their distribution in Figure 11. We can see that 30% of the instance
has a PRR score close to 1, which suggests that our uncertainty
measurement can perfectly capture estimation error for these in-
stances. We have a median PRR score of 0.9, which is the same
as the example in Figure 10. However, in some instances, the PRR
score is very low, generally because of insufficient training queries.

SIGMOD’24, June 09–15, 2024, Santiago, Chile Wu et al.

6 LESSONS LEARNED AND POTENTIAL
FUTURE RESEARCH DIRECTIONS

Throughout the process of building Stage predictor in Redshift, we
learned several important lessons that could benefit the research
community. In the following, we describe these lessons and list
potential research directions that could be valuable to the industry.

6.1 Applying Stage predictor in other tasks
Apart from improving theworkloadmanager in Redshift, we believe
the Stage predictor enables new solutions for many tasks in smart
DBMSes, including query optimization and hypothetical reasoning.

Query optimization. Recently, many ML-based solutions have
been proposed for query optimization [33, 64]. Although these ML-
based techniques can select join-order and physical operators more
accurately than the traditional optimizers, their inference latency
can get up to several hundred milliseconds. Thus, this overhead
will be impractical to optimize short-running queries. To practi-
cally integrate ML-based optimizers into real systems, they can
use Stage predictor as a sub-routine. Specifically, a query could
first be optimized by the default query optimizer inside a system.
Then, the query plan is fed into Stage predictor to estimate its exec-
time, and the system will use the expensive ML-based optimizer to
re-optimize the plan only if it is long-running.

Answering “what-if” questions. Hypothetical reasoning is a cru-
cial element of many database decision-making tasks, including
provenance updates, view manipulation, knob tuning, and auto-
matic cluster scaling [4, 38, 43]. Hypothetical reasoning allows DB
administrators and users to test database assumptions by asking
“what-if” questions, such as “what will the performance of existing
queries be if an index on column X is created?”, “what if the data
size increases by 5x?”, “what if the cluster addes 3 nodes?”. Answer-
ing “what-if” questions is very difficult. For example, learning a
query performance predictor on the executed workloads of a data-
base cannot accurately estimate the performance under “what-if”
scenarios because the model does not observe any training data
under such hypothetical scenarios. Therefore, existing methods
mainly rely on casual inference to answer these questions [17, 37].
In theory, the global model of Stage predictor could provide more
accurate and more fine-grained answers to these “what-if” ques-
tions. Since the transferrable global model distills the knowledge
of a DBMS, it will observe these “what-if” scenarios happening on
other similar databases. Thus, it can leverage the observation on
other databases to accurately predict the query performance under
“what-if” scenarios of the current database.

6.2 Hierarchical models
When designing a practical exec-time predictor for Redshift, we
found that although a plethora of ML-based predictors can provide
more accurate exec-time prediction, their inference overhead is too
large to be deployed on the critical path of Redshift. We believe
this problem generally exists in the database research community
beyond exec-time prediction and Redshift.

Most ML models naturally present a trade-off between accuracy
and model size/inference latency that more accurate models tend to
be more expensive. Thus, when sophisticated ML-based solutions

are adopted to solve existing database problems on the critical path
of query execution, they will inevitably incur a non-trivial overhead.
This overhead may be unaffordable for short-running queries. We
believe the hierarchical model solutions, similar to the Stage predic-
tor, could enable a practical adoption of ML-based solutions to best
leverage their accuracy with an affordable inference overhead. To
the best of our knowledge, there does not exist other works in the
database community that use the idea of hierarchical models. In the
following, we provide a detailed example of cardinality estimation,
which is on the critical path of query execution.

Cardinality estimation is crucial for query optimization. Due to
its challenging nature, sophisticated ML-based solutions [22, 65, 69]
have been proposed to improve the accuracy of their traditional
counterpart. Their inference latency varies from a couple of millisec-
onds to a hundred milliseconds [20], which will not be affordable for
short-running queries. A hierarchy of several cardinality estimators
with different accuracy/overhead trade-offs could enable practical
integration of ML-based solutions in real systems. Specifically, the
queries will first be fed into cheap estimators and more expensive
estimators will be invoked only if the previous cheaper estimator
is uncertain about its prediction. Therefore, the inference overhead
of the expensive estimators can be amortized out.

6.3 Environment factors in exec-time prediction
Inside Redshift, we found that the same query in the same clus-
ter can sometimes have very different exec-times ranging from a
couple of seconds to several minutes, even hours because of dif-
ferent environment factors at the time of execution. These factors
include memory and CPU utilizations that directly affect the query
exec-time. For example, if 90% of memory has been used by other
jobs in the clusters, a query may spill its intermediate results to
disk, incurring a large additional cost. However, simply adding the
memory and CPU utilizations at the time of execution into the
feature of predictor is unlikely to provide better prediction because
they can vary throughout the execution of a query.

Furthermore, there exist other environment factors, such as
cache effect and buffer pool state that are not trivial to featurize in
Stage predictor or any other exec-time predictors. Specifically, the
recently accessed pages will be cached which can greatly speed up
the following queries touching the same pages.

We believe designing exec-time predictors that can accurately
take these environment factors into consideration can further im-
prove the prediction accuracy.

7 CONCLUSIONS
We have presented Stage, a novel hierarchical query performance
predictor custom-tailored to Amazon Redshift’s specific require-
ments. The Stage predictor provides fast and robust query per-
formance predictions by taking advantage of the repetitive na-
ture of analytic workloads, remembering the latency of common,
frequently-issued queries, and using two different machine learn-
ing models for similar and novel queries, respectively. We showed
that Stage predictor improves the average query latency by 20%
when compared to Redshift’s prior exec-time predictor. Based on
the lessons learned from building Stage predictor, we pointed out a
list of research directions that could be fruitful.

Stage: Query Execution Time Prediction in Amazon Redshift SIGMOD’24, June 09–15, 2024, Santiago, Chile

REFERENCES
[1] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik.

2012. Learning-based Query Performance Modeling and Prediction. In IEEE 28th
International Conference on Data Engineering (ICDE 2012), Washington, DC, USA
(Arlington, Virginia), 1-5 April, 2012, Anastasios Kementsietsidis and Marcos
Antonio Vaz Salles (Eds.). IEEE Computer Society, 390–401. https://doi.org/10.
1109/ICDE.2012.64

[2] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, Semih
Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM,
1009–1024. https://doi.org/10.1145/3035918.3064029

[3] Mennatallah Amer, Markus Goldstein, and Slim Abdennadher. 2013. Enhanc-
ing one-class support vector machines for unsupervised anomaly detection. In
Proceedings of the ACM SIGKDD workshop on outlier detection and description.
8–15.

[4] Bahareh Sadat Arab and Boris Glavic. 2017. Answering HistoricalWhat-if Queries
with Provenance, Reenactment, and Symbolic Execution. In 9th USENIXWorkshop
on the Theory and Practice of Provenance, TaPP 2017, Seattle, WA, USA, June 23,
2017, Adam Bates and Bill Howe (Eds.). USENIX Association. https://www.
usenix.org/conference/tapp17/workshop-program/presentation/arab

[5] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish Gupta,
Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy,
Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Polychro-
niou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Subramanian,
and Doug Terry. 2022. Amazon Redshift Re-invented. In SIGMOD ’22: Interna-
tional Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022,
Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 2205–2217.
https://doi.org/10.1145/3514221.3526045

[6] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Prad-
han, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D
Goodman. 2019. Pyro: Deep universal probabilistic programming. The Journal of
Machine Learning Research 20, 1 (2019), 973–978.

[7] Jing Chen, Tiantian Du, and Gongyi Xiao. 2021. Amulti-objective optimization for
resource allocation of emergent demands in cloud computing. J. Cloud Comput.
10, 1 (2021), 20. https://doi.org/10.1186/s13677-021-00237-7

[8] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016, Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen, and Rajeev Rastogi (Eds.). ACM, 785–794. https://doi.org/10.1145/
2939672.2939785

[9] Yun Chi, Hyun Jin Moon, Hakan Hacigümüs, and Jun’ichi Tatemura. 2011. SLA-
tree: a framework for efficiently supporting SLA-based decisions in cloud comput-
ing. In EDBT 2011, 14th International Conference on Extending Database Technology,
Uppsala, Sweden, March 21-24, 2011, Proceedings, Anastasia Ailamaki, SihemAmer-
Yahia, Jignesh M. Patel, Tore Risch, Pierre Senellart, and Julia Stoyanovich (Eds.).
ACM, 129–140. https://doi.org/10.1145/1951365.1951383

[10] John W Coulston, Christine E Blinn, Valerie A Thomas, and Randolph H Wynne.
2016. Approximating prediction uncertainty for random forest regression models.
Photogrammetric Engineering & Remote Sensing 82, 3 (2016), 189–197.

[11] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. 2010. Schism:
a Workload-Driven Approach to Database Replication and Partitioning. Proc.
VLDB Endow. 3, 1 (2010), 48–57. https://doi.org/10.14778/1920841.1920853

[12] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Executions to Improve
Index Recommendations. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June
30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol
Deshpande, and Tim Kraska (Eds.). ACM, 1241–1258. https://doi.org/10.1145/
3299869.3324957

[13] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.
Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed
Workloads. Proc. VLDB Endow. 14, 2 (2020), 74–86. https://doi.org/10.14778/
3425879.3425880

[14] Tony Duan, Anand Avati, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu, An-
drew Y. Ng, and Alejandro Schuler. 2020. NGBoost: Natural Gradient Boost-
ing for Probabilistic Prediction. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event (Pro-
ceedings of Machine Learning Research, Vol. 119). PMLR, 2690–2700. http:
//proceedings.mlr.press/v119/duan20a.html

[15] Jennie Duggan, Olga Papaemmanouil, Ugur Çetintemel, and Eli Upfal. 2014. Con-
tender: A Resource Modeling Approach for Concurrent Query Performance
Prediction. In Proceedings of the 17th International Conference on Extending
Database Technology, EDBT 2014, Athens, Greece, March 24-28, 2014, Sihem

Amer-Yahia, Vassilis Christophides, Anastasios Kementsietsidis, Minos N. Garo-
falakis, Stratos Idreos, and Vincent Leroy (Eds.). OpenProceedings.org, 109–120.
https://doi.org/10.5441/002/EDBT.2014.11

[16] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. In Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016 (JMLR Workshop and Conference Proceedings, Vol. 48),
Maria-Florina Balcan and Kilian Q. Weinberger (Eds.). JMLR.org, 1050–1059.
http://proceedings.mlr.press/v48/gal16.html

[17] Sainyam Galhotra, Amir Gilad, Sudeepa Roy, and Babak Salimi. 2022. HypeR:
Hypothetical Reasoning With What-If and How-To Queries Using a Probabilistic
Causal Approach. In SIGMOD ’22: International Conference on Management of
Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati,
and Amr El Abbadi (Eds.). ACM, 1598–1611. https://doi.org/10.1145/3514221.
3526149

[18] Tilmann Gneiting and Matthias Katzfuss. 2014. Probabilistic forecasting. Annual
Review of Statistics and Its Application 1 (2014), 125–151.

[19] Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani.
2014. Probabilistic programming. In Future of Software Engineering Proceedings.
167–181.

[20] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai
Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren Zhou,
Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A Com-
prehensive Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (2021), 752–765.
https://doi.org/10.14778/3503585.3503586

[21] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for Out-
of-the-box Learned Cost Prediction. Proc. VLDB Endow. 15, 11 (2022), 2361–2374.
https://www.vldb.org/pvldb/vol15/p2361-hilprecht.pdf

[22] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian
Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from Queries!
Proc. VLDB Endow. 13, 7 (2020), 992–1005. https://doi.org/10.14778/3384345.
3384349

[23] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass learned
index. In Proceedings of the Third International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management, aiDM@SIGMOD 2020, Portland,
Oregon, USA, June 19, 2020, Rajesh Bordawekar, Oded Shmueli, Nesime Tatbul,
and Tin Kam Ho (Eds.). ACM, 5:1–5:5. https://doi.org/10.1145/3401071.3401659

[24] Thomas N. Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. (2016). https://doi.org/10.48550/ARXIV.1609.
02907 Publisher: arXiv Version Number: 4.

[25] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein
(Eds.). ACM, 489–504. https://doi.org/10.1145/3183713.3196909

[26] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Simple
and Scalable Predictive Uncertainty Estimation using Deep Ensembles. In Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Is-
abelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and RomanGarnett (Eds.). 6402–6413. https://proceedings.
neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html

[27] Jiexing Li, Arnd Christian König, Vivek R. Narasayya, and Surajit Chaudhuri. 2012.
Robust Estimation of Resource Consumption for SQL Queries using Statistical
Techniques. Proc. VLDB Endow. 5, 11 (2012), 1555–1566. https://doi.org/10.14778/
2350229.2350269

[28] Kun-Lun Li, Hou-Kuan Huang, Sheng-Feng Tian, and Wei Xu. 2003. Improving
one-class SVM for anomaly detection. In Proceedings of the 2003 international
conference on machine learning and cybernetics (IEEE Cat. No. 03EX693), Vol. 5.
IEEE, 3077–3081.

[29] Chenghao Lyu, Qi Fan, Fei Song, Arnab Sinha, Yanlei Diao,Wei Chen, Li Ma, Yihui
Feng, Yaliang Li, Kai Zeng, and Jingren Zhou. 2022. Fine-Grained Modeling and
Optimization for Intelligent Resource Management in Big Data Processing. Proc.
VLDB Endow. 15, 11 (2022), 3098–3111. https://www.vldb.org/pvldb/vol15/p3098-
lyu.pdf

[30] Andrey Malinin, Bruno Mlodozeniec, and Mark J. F. Gales. 2020. Ensemble
Distribution Distillation. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.
https://openreview.net/forum?id=BygSP6Vtvr

[31] Andrey Malinin, Liudmila Prokhorenkova, and Aleksei Ustimenko. 2021. Un-
certainty in Gradient Boosting via Ensembles. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net. https://openreview.net/forum?id=1Jv6b0Zq3qi

[32] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization Practical.
In Proceedings of the 2021 International Conference on Management of Data (SIG-
MOD ’21). China. https://doi.org/10.1145/3448016.3452838 Award: ’best paper

https://doi.org/10.1109/ICDE.2012.64
https://doi.org/10.1109/ICDE.2012.64
https://doi.org/10.1145/3035918.3064029
https://www.usenix.org/conference/tapp17/workshop-program/presentation/arab
https://www.usenix.org/conference/tapp17/workshop-program/presentation/arab
https://doi.org/10.1145/3514221.3526045
https://doi.org/10.1186/s13677-021-00237-7
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/1951365.1951383
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.14778/3425879.3425880
https://doi.org/10.14778/3425879.3425880
http://proceedings.mlr.press/v119/duan20a.html
http://proceedings.mlr.press/v119/duan20a.html
https://doi.org/10.5441/002/EDBT.2014.11
http://proceedings.mlr.press/v48/gal16.html
https://doi.org/10.1145/3514221.3526149
https://doi.org/10.1145/3514221.3526149
https://doi.org/10.14778/3503585.3503586
https://www.vldb.org/pvldb/vol15/p2361-hilprecht.pdf
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.48550/ARXIV.1609.02907
https://doi.org/10.48550/ARXIV.1609.02907
https://doi.org/10.1145/3183713.3196909
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://doi.org/10.14778/2350229.2350269
https://doi.org/10.14778/2350229.2350269
https://www.vldb.org/pvldb/vol15/p3098-lyu.pdf
https://www.vldb.org/pvldb/vol15/p3098-lyu.pdf
https://openreview.net/forum?id=BygSP6Vtvr
https://openreview.net/forum?id=1Jv6b0Zq3qi
https://doi.org/10.1145/3448016.3452838

SIGMOD’24, June 09–15, 2024, Santiago, Chile Wu et al.

award’.
[33] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,

Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. PVLDB 12, 11 (2019), 1705–1718.

[34] Ryan Marcus and Olga Papaemmanouil. 2016. WiSeDB: A Learning-based Work-
load Management Advisor for Cloud Databases. Proc. VLDB Endow. 9, 10 (2016),
780–791. https://doi.org/10.14778/2977797.2977804

[35] Ryan Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural
Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11
(2019), 1733–1746. https://doi.org/10.14778/3342263.3342646

[36] Nicolai Meinshausen. 2006. Quantile Regression Forests. J. Mach. Learn. Res. 7
(2006), 983–999. http://jmlr.org/papers/v7/meinshausen06a.html

[37] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu.
2010. WHY SO? orWHYNO? Functional Causality for ExplainingQueryAnswers.
In Proceedings of the Fourth International VLDB workshop on Management of
Uncertain Data (MUD 2010) in conjunction with VLDB 2010, Singapore, September
13, 2010 (CTIT Workshop Proceedings Series, Vol. WP10-04), Ander de Keijzer and
Maurice van Keulen (Eds.). Centre for Telematics and Information Technology
(CTIT), University of Twente, The Netherlands, 3–17. http://ewi1276.ewi.utwente.
nl:3000/papers/MUD2010_whyso.pdf

[38] Alexandra Meliou and Dan Suciu. 2012. Tiresias: the database oracle for how-to
queries. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, K. Selçuk
Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano, and Ariel Fuxman (Eds.).
ACM, 337–348. https://doi.org/10.1145/2213836.2213875

[39] Lucas Mentch and Giles Hooker. 2016. Quantifying Uncertainty in Random
Forests via Confidence Intervals and Hypothesis Tests. J. Mach. Learn. Res. 17
(2016), 26:1–26:41. http://jmlr.org/papers/v17/14-168.html

[40] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors. PVLDB 2, 1
(2009), 982–993. https://doi.org/10.14778/1687627.1687738

[41] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-
ingMulti-Dimensional Indexes. In Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-
Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 985–1000.
https://doi.org/10.1145/3318464.3380579

[42] Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam
Madden, Tim Kraska, and Mohammad Alizadeh. 2023. Robust Query Driven
Cardinality Estimation under Changing Workloads. Proc. VLDB Endow. 16, 6
(2023), 1520–1533. https://doi.org/10.14778/3583140.3583164

[43] Susana Nieva, Fernando Sáenz-Pérez, and Jaime Sánchez-Hernández. 2020. HR-
SQL: Extending SQL with hypothetical reasoning and improved recursion for
current database systems. Inf. Comput. 271 (2020), 104485. https://doi.org/10.
1016/J.IC.2019.104485

[44] Jakub Nowotarski and Rafał Weron. 2018. Recent advances in electricity price
forecasting: A review of probabilistic forecasting. Renewable and Sustainable
Energy Reviews 81 (2018), 1548–1568.

[45] Adeola Ogunleye and Qing-GuoWang. 2020. XGBoost Model for Chronic Kidney
Disease Diagnosis. IEEE ACM Trans. Comput. Biol. Bioinform. 17, 6 (2020), 2131–
2140. https://doi.org/10.1109/TCBB.2019.2911071

[46] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang,
Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. 2018. Quickstep: A
Data Platform Based on the Scaling-Up Approach. Proc. VLDB Endow. 11, 6 (2018),
663–676. https://doi.org/10.14778/3184470.3184471

[47] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. J. Mach. Learn. Res. 12 (Nov. 2011), 2825–2830.
http://dl.acm.org/citation.cfm?id=1953048.2078195

[48] Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev,
Anna Veronika Dorogush, and Andrey Gulin. 2018. CatBoost: unbiased boost-
ing with categorical features. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett (Eds.). 6639–6649. https://proceedings.neurips.cc/paper/2018/hash/
14491b756b3a51daac41c24863285549-Abstract.html

[49] Harry V Roberts. 1965. Probabilistic prediction. J. Amer. Statist. Assoc. 60, 309
(1965), 50–62.

[50] Gaurav Saxena, Mohammad Rahman, Naresh Chainani, Chunbin Lin, George
Caragea, Fahim Chowdhury, Ryan Marcus, Tim Kraska, Ippokratis Pandis, and
Balakrishnan (Murali) Narayanaswamy. 2023. Auto-WLM: Machine Learning
Enhanced Workload Management in Amazon Redshift. In Companion of the 2023
International Conference on Management of Data, SIGMOD/PODS 2023, Seattle,
WA, USA, June 18-23, 2023, Sudipto Das, Ippokratis Pandis, K. Selçuk Candan,

and Sihem Amer-Yahia (Eds.). ACM, 225–237. https://doi.org/10.1145/3555041.
3589677

[51] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[52] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator. Proc.
VLDB Endow. 13, 3 (2019), 307–319. https://doi.org/10.14778/3368289.3368296

[53] Rebecca Taft, Willis Lang, Jennie Duggan, Aaron J. Elmore, Michael Stone-
braker, and David J. DeWitt. 2016. STeP: Scalable Tenant Placement for Man-
aging Database-as-a-Service Deployments. In Proceedings of the Seventh ACM
Symposium on Cloud Computing, Santa Clara, CA, USA, October 5-7, 2016, Mar-
cos K. Aguilera, Brian Cooper, and Yanlei Diao (Eds.). ACM, 388–400. https:
//doi.org/10.1145/2987550.2987575

[54] Laurent Torlay, Marcela Perrone-Bertolotti, Elizabeth Thomas, and Monica Baciu.
2017. Machine learning-XGBoost analysis of language networks to classify
patients with epilepsy. Brain Informatics 4, 3 (2017), 159–169. https://doi.org/10.
1007/S40708-017-0065-7

[55] Sean Tozer, Tim Brecht, and Ashraf Aboulnaga. 2010. Q-Cop: Avoiding bad query
mixes to minimize client timeouts under heavy loads. In Proceedings of the 26th
International Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long
Beach, California, USA, Feifei Li, Mirella M. Moro, Shahram Ghandeharizadeh,
Jayant R. Haritsa, Gerhard Weikum, Michael J. Carey, Fabio Casati, Edward Y.
Chang, Ioana Manolescu, Sharad Mehrotra, Umeshwar Dayal, and Vassilis J.
Tsotras (Eds.). IEEE Computer Society, 397–408. https://doi.org/10.1109/ICDE.
2010.5447850

[56] Immanuel Trummer, Samuel Moseley, Deepak Maram, Saehan Jo, and Joseph
Antonakakis. 2018. SkinnerDB: Regret-bounded Query Evaluation via Rein-
forcement Learning. PVLDB 11, 12 (2018), 2074–2077. https://doi.org/10.14778/
3229863.3236263

[57] Benjamin Wagner, André Kohn, and Thomas Neumann. 2021. Self-Tuning Query
Scheduling for Analytical Workloads. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 1879–1891. https:
//doi.org/10.1145/3448016.3457260

[58] B. P. Welford. 1962. Note on a Method for Calculating Cor-
rected Sums of Squares and Products. Technometrics 4, 3
(1962), 419–420. https://doi.org/10.1080/00401706.1962.10490022
arXiv:https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.10490022

[59] Andrew Gordon Wilson and Pavel Izmailov. 2020. Bayesian Deep Learn-
ing and a Probabilistic Perspective of Generalization. In Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
322f62469c5e3c7dc3e58f5a4d1ea399-Abstract.html

[60] Lucas Woltmann, Jerome Thiessat, Claudio Hartmann, Dirk Habich, and Wolf-
gang Lehner. 2023. FASTgres: Making Learned Query Optimizer Hinting Ef-
fective. Proceedings of the VLDB Endowment 16, 11 (Aug. 2023), 3310–3322.
https://doi.org/10.14778/3611479.3611528

[61] Fei Wu, Xiao-Yuan Jing, Pengfei Wei, Chao Lan, Yimu Ji, Guo-Ping Jiang, and
QinghuaHuang. 2022. Semi-supervisedmulti-view graph convolutional networks
with application to webpage classification. Inf. Sci. 591 (2022), 142–154. https:
//doi.org/10.1016/J.INS.2022.01.013

[62] Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan Hacigümüs,
and Jeffrey F. Naughton. 2013. Predicting query execution time: Are optimizer
cost models really unusable?. In 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, Christian S. Jensen,
Christopher M. Jermaine, and Xiaofang Zhou (Eds.). IEEE Computer Society,
1081–1092. https://doi.org/10.1109/ICDE.2013.6544899

[63] Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and Samuel
Madden. 2023. FactorJoin: A New Cardinality Estimation Framework for Join
Queries. Proc. ACM Manag. Data 1, 1 (2023), 41:1–41:27. https://doi.org/10.1145/
3588721

[64] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal, Michael Luo, and
Ion Stoica. 2022. Balsa: Learning a Query Optimizer Without Expert Demon-
strations. In Proceedings of the 2022 International Conference on Management of
Data (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,
931–944. https://doi.org/10.1145/3514221.3517885

[65] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73. https://doi.org/10.14778/3421424.3421432

[66] Chi Zhang, Ryan Marcus, Anat Kleiman, and Olga Papaemmanoui l. 2020. Buffer
Pool Aware Query Scheduling via Deep Reinforc ement Learning. In 2nd In-
ternational Workshop on Applied AI for Datab ase Systems and Applications
(AIDB@VLDB ’20), Bingsheng He, Berthold Reinwald, and Yingjun Wu (Eds.).
Tokyo, Japan. https://drive.google.com/file/d/1trNYAcQ3S71SHu5dbtkBR2hjcK-
VWFSx/view?usp=sharing

https://doi.org/10.14778/2977797.2977804
https://doi.org/10.14778/3342263.3342646
http://jmlr.org/papers/v7/meinshausen06a.html
http://ewi1276.ewi.utwente.nl:3000/papers/MUD2010_whyso.pdf
http://ewi1276.ewi.utwente.nl:3000/papers/MUD2010_whyso.pdf
https://doi.org/10.1145/2213836.2213875
http://jmlr.org/papers/v17/14-168.html
https://doi.org/10.14778/1687627.1687738
https://doi.org/10.1145/3318464.3380579
https://doi.org/10.14778/3583140.3583164
https://doi.org/10.1016/J.IC.2019.104485
https://doi.org/10.1016/J.IC.2019.104485
https://doi.org/10.1109/TCBB.2019.2911071
https://doi.org/10.14778/3184470.3184471
http://dl.acm.org/citation.cfm?id=1953048.2078195
https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://doi.org/10.1145/3555041.3589677
https://doi.org/10.1145/3555041.3589677
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.1145/2987550.2987575
https://doi.org/10.1145/2987550.2987575
https://doi.org/10.1007/S40708-017-0065-7
https://doi.org/10.1007/S40708-017-0065-7
https://doi.org/10.1109/ICDE.2010.5447850
https://doi.org/10.1109/ICDE.2010.5447850
https://doi.org/10.14778/3229863.3236263
https://doi.org/10.14778/3229863.3236263
https://doi.org/10.1145/3448016.3457260
https://doi.org/10.1145/3448016.3457260
https://doi.org/10.1080/00401706.1962.10490022
https://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.10490022
https://proceedings.neurips.cc/paper/2020/hash/322f62469c5e3c7dc3e58f5a4d1ea399-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/322f62469c5e3c7dc3e58f5a4d1ea399-Abstract.html
https://doi.org/10.14778/3611479.3611528
https://doi.org/10.1016/J.INS.2022.01.013
https://doi.org/10.1016/J.INS.2022.01.013
https://doi.org/10.1109/ICDE.2013.6544899
https://doi.org/10.1145/3588721
https://doi.org/10.1145/3588721
https://doi.org/10.1145/3514221.3517885
https://doi.org/10.14778/3421424.3421432
https://drive.google.com/file/d/1trNYAcQ3S71SHu5dbtkBR2hjcK-VWFSx /view?usp=sharing
https://drive.google.com/file/d/1trNYAcQ3S71SHu5dbtkBR2hjcK-VWFSx /view?usp=sharing

Stage: Query Execution Time Prediction in Amazon Redshift SIGMOD’24, June 09–15, 2024, Santiago, Chile

[67] Dahai Zhang, Liyang Qian, Baijin Mao, Can Huang, Bin Huang, and Yulin Si.
2018. A Data-Driven Design for Fault Detection of Wind Turbines Using Random
Forests and XGboost. IEEE Access 6 (2018), 21020–21031. https://doi.org/10.1109/
ACCESS.2018.2818678

[68] Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. 2020. Query performance
prediction for concurrent queries using graph embedding. Proceedings of the

VLDB Endowment 13, 9 (2020), 1416–1428.
[69] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,

Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method
for Cardinality Estimation. Proc. VLDB Endow. 14, 9 (2021), 1489–1502. https:
//doi.org/10.14778/3461535.3461539

https://doi.org/10.1109/ACCESS.2018.2818678
https://doi.org/10.1109/ACCESS.2018.2818678
https://doi.org/10.14778/3461535.3461539
https://doi.org/10.14778/3461535.3461539

	Abstract
	1 Introduction
	2 Background
	2.1 Execution time predictor in Redshift
	2.2 Related Works

	3 Design Principles
	4 Stage Predictor
	4.1 Overview
	4.2 Exec-time Cache
	4.3 Instance-optimized local model
	4.4 Transferrable global model

	5 Experimental Evaluation
	5.1 Experimental Settings
	5.2 End-to-end Evaluation in Redshift
	5.3 Stage Predictor Accuracy
	5.4 Ablation study

	6 Lessons learned and potential future research directions
	6.1 Applying Stage predictor in other tasks
	6.2 Hierarchical models
	6.3 Environment factors in exec-time prediction

	7 Conclusions
	References

