
Towards a Benchmark for Learned Systems
Laurent Bindschaedler∗, Andreas Kipf∗, Tim Kraska∗, Ryan Marcus∗, and Umar Farooq Minhas†

∗Data Systems and AI Lab, Massachusetts Institute of Technology
{bindscha, kipf, kraska, ryanmarcus}@mit.edu
†Database Group, Microsoft Research, Redmond

ufminhas@microsoft.com

Abstract—This paper aims to initiate a discussion around
benchmarking data management systems with machine-learned
components. Traditional benchmarks such as TPC or YCSB are
insufficient to analyze and understand these learned systems be-
cause they evaluate the performance under a stable workload and
data distribution. Learned systems automatically specialize and
adapt database components to a changing workload, database,
and execution environment, thereby making conventional met-
rics such as average throughput ill-suited to understand their
performance fully. Moreover, the standard cost-per-performance
metrics fail to account for essential trade-offs related to the train-
ing cost of models and the elimination of manual database tuning.
We present several ideas for designing new benchmarks that are
better suited to evaluate learned systems. The main challenges
entail developing new metrics to capture the particularities of
learned systems and ensuring that benchmark results remain
comparable across many deployments with wide-ranging designs.

Index Terms—benchmark, learned system, instance-optimized
system, data management, machine learning, metrics, cost of
ownership

I. INTRODUCTION

Conventional benchmarks aim to evaluate the average per-
formance of a data management system in a specific scenario
with a fixed workload and data distribution, usually based
on synthetic data generators [1]–[7]. Benchmark specifications
generally mandate a fixed deployment environment and config-
uration for the system under test, including stable workloads,
fixed datasets, and standard metrics. Accordingly, these bench-
marks reflect the average performance and total ownership cost
of a static system in a well-defined, predetermined scenario.

Recently, data management systems have undergone a
paradigm shift where the use of machine learning models
offers performance benefits by synthesizing optimized compo-
nents [8]–[10] or tuning configuration ”knobs” [11]–[13] for a
given use case. For instance, reinforcement learning techniques
can adaptively pick the best query execution plan under chang-
ing workloads or database conditions [14]–[16], optimized
data structures can be automatically synthesized from first
principles [10], and approximate search heuristics allow con-
structing efficient data storage layouts [17]. These new learned
systems (sometimes also referred to as instance-optimized)
allow specialization to a given workload and data distribu-
tion and adaptability to changing conditions unmatched by
traditional systems designed for general-purpose usage [18].
These benefits come at the cost of learning (and maintaining)

the models used by individual components and involve new
trade-offs for conventional database administration practices.

In this paper, we argue that existing benchmarks lack flex-
ibility and do not sufficiently represent real-world workloads
and, therefore, are insufficient to analyze and compare learned
systems properly. Fundamentally, learned systems are dynamic
and adaptive in nature, and their performance characteristics
cannot be summarized in a single average performance score.
Consequently, we propose designing new benchmarks that
better fit the characteristics of learned systems. Doing so
entails new challenges to design scenarios that reflect the
dynamic behavior of real-world applications and to make the
benchmark results comparable across widely different learning
techniques and system designs.

A first difference is that new benchmarks should not only
use fixed workload and data distributions to evaluate learned
systems. Instead, these distributions should better resemble
evolving real-world data and be hard to predict, e.g., vary-
ing dataset size and lifetime, fluctuations in query load and
concurrency, complex diurnal patterns, or growing data skew
over time [19]–[21]. The benchmark should then measure and
report on the ability of a system to specialize to a given
workload and data distribution, as well as its adaptability
to changes. Therefore, new metrics are required to comple-
ment existing ones. Such metrics should focus on descriptive
throughput statistics and outliers, along with throughput and
latency during transitions between distributions. It is also
desirable to capture the time a system takes to adapt to a
new workload.

A prevalent problem is overfitting a system to the bench-
mark, leading to significant performance improvements that do
not translate to real-world scenarios. While this issue is already
present in traditional systems and benchmarks, it becomes
more severe in the case of learned systems due to their inherent
ability to specialize in specific situations.

Additionally, new benchmarks should embrace model train-
ing as a first-class citizen, equally important as actual execu-
tion. Since better models usually result in better performance
during execution, the training time and cost should be part of
the reported benchmark results. Moreover, these new training
metrics should be put into perspective and made comparable
across several systems. As learned systems enable automation
of manual tuning by database administrators, a benchmark
should compare model training costs to manual optimizations.

There is no benchmark designed to evaluate data manage-

127

2021 IEEE 37th International Conference on Data Engineering Workshops (ICDEW)

978-1-6654-4890-1/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDEW53142.2021.00029

20
21

 IE
EE

 3
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
W

or
ks

ho
ps

 (I
C

D
EW

) |
 9

78
-1

-6
65

4-
48

90
-1

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
D

EW
53

14
2.

20
21

.0
00

29

Authorized licensed use limited to: MIT Libraries. Downloaded on July 07,2022 at 16:21:08 UTC from IEEE Xplore. Restrictions apply.

ment systems with learned components in dynamic scenarios
to the best of our knowledge. OLTP-Bench supports evolving
workload mixing and access patterns but not varying data
distributions [22]. Likewise, the Under Pressure Benchmark
introduces shifting workloads in the context of detecting
failures in distributed databases [23].

We make the following contributions in this paper:
• We provide an overview of learned systems and state their

main characteristics (§II).
• We discuss various problems with existing benchmarks

and explain why they are a bad fit (§III).
• We list new requirements for benchmarking learned sys-

tems (§IV).
• We present some initial ideas to build a new benchmark,

including changes to the configuration and execution, as
well as some new metrics to complement the results (§V).

II. LEARNED SYSTEMS

Traditional data management systems are engineered for
general-purpose data storage and access. This generality,
which results from the lack of runtime adaptation, limits
these systems from leveraging specific characteristics of the
workload or data distribution for optimization purposes. On
the opposite end of the spectrum lie custom-built systems that
are highly optimized for a given application and dataset.

Learned systems attempt to bridge the performance gap be-
tween general-purpose data management systems and special-
ized solutions through machine learning techniques. A learned
system can automatically synthesize optimized database com-
ponents such as indices or query optimizers by learning models
for the data distribution or the workload. Moreover, such a
system can automatically adapt to perceived changes.

This learning-based approach presents a radical paradigm
shift from traditional optimization. We believe that the com-
ing years will see the commercialization of several learned
databases that instantiate all components and dynamically tune
their interactions at runtime, thereby truly mimicking special-
ized systems. Today, the state-of-the-art focuses on learning
models to synthesize specific database components such as
query optimizers, query execution operators, and indices. In
the remainder of this section, we provide a brief overview of
these approaches. The interested reader may consult [9] for a
more detailed description.

Query optimization is an excellent candidate for learned
approaches due to the complexity of conventional optimiz-
ers [24]. Different approaches are possible: learning cardi-
nality estimates [25]–[29], learning to tune an existing query
optimizer [14], or even learning a complete optimizer [15].
A popular technique relies on deep reinforcement learning to
generate optimized query execution plans on-the-fly, improv-
ing with each incoming query. Reinforcement learning can also
help optimize scheduling policies in specific workloads [30].

Similarly, models can improve query execution perfor-
mance. For example, a cumulative distribution function (CDF)
model allows fast sorting by placing the data records in
roughly sorted order and then running a quick touch-up pass

to get the final correct order [31]. A similar CDF approach
can be used for joins where the model allows to skip over
data records that will not join.

Learned indices improve data access performance by fitting
a model over the data to capture the distribution’s characteris-
tics. Such models are often arranged in a tree, with the predic-
tion of a model being used to pick a more specialized model
recursively until the leaf model makes a final prediction [8].
Learned indices have been shown to outperform B+ trees in
various situations, and several improvements have recently
been proposed to add support for compression, updates, and
multi-indexing [32]–[35].

Many other potential opportunities for machine learning
optimization are actively explored at the time of writing,
including approximate query processing, predictive models
training, learning-based caches, and insert/update optimiza-
tion. Similarly, other approaches that focus on tuning existing
components rather than synthesizing new components from
scratch have shown promise [11]–[13].

Many of these techniques provide up to orders-of-magnitude
better performance under laboratory conditions. However, it
remains largely unclear how these numbers will hold up in
more realistic production environments. At the same time,
practitioners are wary about adapting and including these
techniques into mainstream systems due to a lack of evidence
of how they would perform under varying conditions. We
believe the only way to address these concerns properly is
through better benchmarking.

III. PROBLEMS WITH EXISTING BENCHMARKS

Traditional benchmarks for data management systems imi-
tate the behavior of specific workloads or applications to assess
the performance of the system under test, generally a key-value
store or a relational database [1]–[5]. Most benchmarks make
no assumptions about the technologies or software used by the
system under test. They test an entire data management system
end-to-end, as actual end-users will see it. However, these
benchmarks are unsuitable for evaluating and understanding
systems with learned components and may cause users to draw
improper conclusions. Some benchmarks even forbid systems
from leveraging workload knowledge (e.g., prematerializing
data structures or indexes). In the remainder of this section,
we outline several shortcomings of existing benchmarks.

A. Fixed Workload and Database

Benchmarks generally simulate well-defined scenarios with
a stable and deterministic query workload on a database whose
data distributions remain mostly fixed throughout execution. In
contrast, many real-world deployments exhibit a wide range of
behaviors such as evolving workloads, diurnal query patterns,
temporary bursts in query load or concurrency, changing data
distributions and dataset size, or varying degrees of skew that
classical benchmarks rarely capture [19]–[21]. As a result,
multiple separate benchmarks are often required to exercise a
system under various situations and achieve sufficient coverage
of possible cases. Since learned systems are, by definition,

128

Authorized licensed use limited to: MIT Libraries. Downloaded on July 07,2022 at 16:21:08 UTC from IEEE Xplore. Restrictions apply.

adaptable, it is highly desirable to benchmark them in a
single execution run where the transitions between different
situations can be captured and analyzed. Additionally, proper
comparisons between learned and traditional systems should
not rely on fixed workloads and databases, as their characteris-
tics are easy to learn. For instance, a learned system may gain a
significant performance edge when presented with predictable
data distributions.
y Lesson 1: Abstain from fixed workloads and databases
as their characteristics are easy to learn.

B. Average Performance

The primary metric used by most existing benchmarks is
the throughput that the system under test can handle (number
of queries handled per unit of time) during execution. In the
context of a fixed workload, data distribution, and execution
environment, the average throughput provides a reasonably
good characterization of a system’s performance. However, the
average performance “hides” too much information to prop-
erly portray a system’s performance in a dynamic execution
environment and subject to an evolving workload and data
distribution. Moreover, comparing two learned systems based
on their average performance during execution is inadequate.
For example, one system may perform better on average than
the other but fail to respond to any queries during transition
periods or suffer from excessive throughput variance on some
workloads, making it potentially less adaptable.
y Lesson 2: Average metrics do not capture adaptability.

C. Model Training

Conventional benchmarks generally load data into the
database and immediately execute for a fixed duration or
number of queries, reporting the system’s performance during
the entire execution. This execution mode is incompatible with
many learned systems that require model training either in
a separate first phase or during the actual execution. The
benchmark should not only support training phases, but it
should also measure and report on the training as a first-
class result to enable a more meaningful comparison between
learned systems. Furthermore, existing benchmark results can-
not easily be used to compare learned systems with traditional
data management systems in terms of training time versus
database administration work.
y Lesson 3: Training must be a first-class result.

D. Total Cost of Ownership

The second metric often used by traditional benchmarks
is the cost-per-performance ratio derived from the average
throughput and the system’s total cost of ownership. The total
cost of ownership (TCO) is a dollar value estimate of the
total expenditures involved in running a particular system,
including hardware, software, maintenance, and administration
for a specific duration (typically three years). Several problems
arise from using the total cost of ownership in the context
of learned systems. First, similar to traditional benchmarks,
the TCO is hard to estimate and is often disregarded by

researchers. However, for learned systems, the TCO becomes
even more relevant because it is a fundamental part of the
value proposition of learned systems, i.e., reducing lead time
and avoiding maintenance and administration. Second, as dis-
cussed previously, in the presence of an evolving workload or
data distribution, the average throughput is an improper perfor-
mance characterization. Therefore, the cost-per-performance
ratio may be insufficiently informative.
y Lesson 4: We cannot ignore the human cost anymore.

IV. NEW BENCHMARK REQUIREMENTS

As discussed in §III, data management systems with learned
components are hard to benchmark. Furthermore, developers
and operators of learned systems are confronted with new
trade-offs regarding training and cost. Therefore, the purpose
of a new benchmark for learned systems is to address these
limitations. This benchmark should help developers compare
systems (whether learned or traditional) and choose the right
trade-offs in terms of models, configuration, hardware, and
cost for their systems.

The key benefits of data management systems with learned
components are specialization and adaptability (§II). These
benefits are achieved differently for different database com-
ponents and likely vary significantly across systems. For
example, different systems may use different machine learning
techniques to index data or use the same techniques but with
different parameters. Similarly, some learned components may
have limitations or perform much better in a limited subset
of workloads or data distributions. Some learned components
require a separate training phase to learn a model, while others
can learn online during benchmark execution but possibly im-
pacting the query response time or overall throughput. Train-
ing time may also vary significantly depending on available
hardware resources. Finally, overfitting to a specific execution
may provide significant performance benefits at the expense of
generalizability, e.g., if the data distribution suddenly changes.

A new benchmark should support execution with varying
workload and data distributions without imposing architec-
tural, configuration, or runtime constraints. Doing so is chal-
lenging because, to date, there is no consensus on the type
of interfaces provided by learned systems or constraints on
their behavior during workload or database transitions. The
benchmark should also be agnostic to the differences across
systems yet capture enough relevant metrics to understand the
qualities and shortcomings of a given system. Finally, it should
also provide a factual basis for comparing several systems,
whether they be learned systems or a mix of learned and
traditional systems.

A significant effort may be required for designers or users
of learned components to collect and curate data labels for
training. For instance, supervised learned cardinality esti-
mation requires collecting the real cardinalities to build a
regression model [36]. Ground truth data can be obtained
either during query execution (e.g., collecting all cardinalities
of the executed sub-plans) or in a separate training phase. The

129

Authorized licensed use limited to: MIT Libraries. Downloaded on July 07,2022 at 16:21:08 UTC from IEEE Xplore. Restrictions apply.

benchmark should attempt to measure these costs and include
them in the results.

A key requirement for a learned system benchmark is the
availability of datasets and workloads that are as representative
as possible of real-world scenarios. This requirement may be
stronger than for traditional benchmarks due to the increased
focus on specialization and adaptability. Ideally, the new
benchmark should include several high-quality datasets and
workloads to allow for a thorough evaluation of systems.

While the conventional metrics that make up the results of
existing benchmarks remain relevant, a new benchmark should
combine these metrics with new metrics that incorporate
learning-specific features and behaviors. Similarly, the new
benchmark should also support execution on fixed databases
as a baseline. However, it is necessary to provide more
flexibility to assess the system in different, complementary
areas to understand its performance better. This task is arduous
because it involves summarizing performance characteristics
that are intrinsically dynamic in a single number. As a result,
a new benchmark should strive to augment traditional aver-
age metrics with additional dimensions that capture dynamic
behaviors.

V. IDEAS FOR A NEW BENCHMARK

This section presents some initial ideas towards designing
new benchmarks that are better suited for learned systems. We
first provide an overview of what such benchmarks should look
like in this context. Then, we discuss some necessary changes
in benchmark configuration and execution to support learned
systems. We also briefly address the problem of obtaining
high-quality datasets for benchmarking. Finally, we propose
new metrics that are relevant in this context.

A. Overview

A new benchmark for data management systems with
learned components should not be based on a specific real-
world scenario but rather provide a common framework for
executing different scenarios, each with its own workload
and data distributions. This common framework should test
the complete end-to-end system using a benchmark driver to
generate load and measure performance. The benchmark driver
should ideally run on a separate machine and connect to the
system under test over a fast network connection.

A fundamental difference of this new benchmark compared
to traditional benchmarks is the introduction of new metrics.
While traditional benchmarks focus on average throughput, a
benchmark for learned systems should also analyze a system’s
ability to adjust to varying workload and data distributions, its
capacity to adjust quickly and without significant performance
degradation, and the potential performance benefits of longer
model training time. Accordingly, the benchmark should make
it possible to vary the workload and data distribution during
a single benchmark run based on user-defined parameters.

Learned systems are highly effective at specializing com-
ponents to a given workload and data distribution or to a se-
quence of different workload and data distributions. However,

it is desirable to avoid overfitting models to the benchmark.
Therefore, we propose to include hold-out workload and data
distributions that the system is only allowed to execute once.
In doing so, the benchmark could measure out-of-sample
performance. A possible approach to achieve this is to deploy
the benchmark as a cloud service and evaluate systems on
behalf of users. The use of this benchmark-as-a-service could
be a requirement for inclusion in official benchmark results.

B. Configuration and Execution

In addition to the typical benchmark configuration options
(e.g., database scale factor, mixes of query streams), we
suggest that the benchmark include settings for configuring
execution with different workload and data distributions as
well as setting the training time and associated resource
overhead.

A benchmark can vary workload and data distributions in
different ways that should be configurable. First, a workload
can slowly transition to another or transition abruptly. The type
of transition can impact performance and adaptability in non-
obvious ways. Second, such transitions may occur as part of
a single execution phase or as two separate execution phases
with possible retraining of the models in-between. Finally, the
benchmark must make it possible to define how many different
workload and data distributions to use and in which order they
should be executed.

The benchmark should include configuration options for
model training. Learned systems generally offer better perfor-
mance with more extended training, making the training time
or the training data important components of the benchmark.
Similarly, users should be allowed to configure whether to
use specialized hardware or the fraction of system resources
to dedicate for online training.

C. Data and Workload

A learned system benchmark has a clear need for high-
quality datasets and workloads representing real-world condi-
tions. At a minimum, we should provide guidelines for select-
ing databases and workloads along with the benchmark. The
benchmark could also include a software tool that evaluates the
quality and relevance of a given dataset for the benchmark. For
example, this tool could attribute low marks to uniform data
distributions and workloads while favoring datasets exhibiting
skew or varying query load.

Ideally, the new benchmark should incorporate data and
workloads from a variety of production environments. Unfor-
tunately, most companies are not willing or allowed to share
such data freely, and, therefore, it may prove impossible to in-
clude such datasets in a public benchmark. Privacy-preserving
techniques [37]–[39] may provide a path forward but have so
far failed to convince companies to share large subsets of their
data with the research community. While there is no substitute
for the richness of real-world data, synthetic databases and
workloads may be sufficient to evaluate learned systems. For
instance, a table column containing email addresses could be
replaced by a synthetic email address generator that provides

130

Authorized licensed use limited to: MIT Libraries. Downloaded on July 07,2022 at 16:21:08 UTC from IEEE Xplore. Restrictions apply.

a similar data distribution without adversely affecting the
outcome in many cases. Therefore, an interesting avenue for
a new benchmark involves automatically generating synthetic
datasets and workloads from real-world deployments, e.g.,
using machine learning techniques. Such a synthesizer would
have to extend existing approaches [40], [41] to achieve a
high-fidelity reproduction of real-world conditions.

D. Metrics

We propose several new metrics that focus on the specific
characteristics of learned systems: component specialization,
adaptability, and training cost. These metrics are intended to
complement traditional metrics such as average performance
and cost-per-performance to evaluate the properties of learned
systems better. Figure 1 sketches out the different metrics by
providing example results. In the remainder of this section, we
present and discuss these metrics in more detail.

1) Specialization: Learned systems can automatically syn-
thesize optimized components based on the workload and data
distribution. Therefore, a key metric of the new benchmark
should provide a breakdown of performance for different
workload and data distributions.

We propose to report throughput for each combination
of workload and data distribution. However, instead of only
reporting the average throughput, the benchmark should report
descriptive statistics (e.g., using a box plot) to adequately
capture the specialization and adaptation capabilities of the
system under test (SUT). Moreover, we suggest providing an
estimate of how far workload and data distributions differ
from each other. Similarity across workloads can be estimated,
for example, using the Jaccard similarity [42] between the
sets of all subtrees of the query tree for all queries in the
workload. Likewise, similarity across data distributions can
be evaluated using, e.g., the Kolmogorov–Smirnov test [43]
or the Maximum Mean Discrepancy [44]. Figure 1a shows an
example where we select the first workload or data distribution
as a baseline. Importantly, the similarity values, represented by
the function Φ, across the X-axis need not be precise, and it
should be sufficient to sort the results by Φ value.

Plots such as the one in Figure 1a can be used to answer
several questions about a learned system. When comparing
two or more workload and data distributions, the box plots
provide a good overview of the dispersion, skewness, and
outliers in each case. Therefore, it illustrates how well the
SUT performs in a given situation and whether it manages to
maintain a stable throughput. This type of plot also supports
evaluating out-of-sample performance by plotting hold-out
distributions alongside a baseline distribution.

2) Adaptability: In addition to measuring the performance
of a SUT in a given situation, it is desirable to report how well
and how fast the SUT can adapt to changes in the workload
and data. Adaptability concerns both the throughput variations
and the delays in query response time resulting from a dis-
tribution change. For example, throughput could temporarily
decrease due to the CPU overheads of retraining a model.

Similarly, query latency could increase due to suboptimal
decisions taken by a learned query optimizer.

We suggest reporting throughput variations by plotting the
cumulative queries completed over time. In this case, the slope
of the curve is the throughput, and it is easy to see the impact
of a change. Figure 1b shows an example where the SUT
starts slow and later catches up. We can derive a single-
value result from this plot by computing the area difference
between an ideal system with a constant throughput. Similarly,
we can easily compare two systems by plotting them on the
same chart. When comparing two systems, the area difference
between the two systems provides a single-value result.

We also propose to report query latency bands at, e.g.,
1-second or 10-second intervals throughout execution. Each
query latency band represents the number of completed queries
within the interval (throughput), split into two categories
depending on whether the query finished within the allotted
Service-Level Agreement (SLA) time. An example is provided
in Figure 1c. A low number of completed queries or a high
number of queries with an SLA violation (red) following
a distribution change indicates slow adjustment speed. This
metric is highly dependent on the choice of the SLA threshold.
Therefore, the SLA threshold should ideally be determined
based on a baseline system’s query latency statistics on the
same hardware and workload distribution.

Increasing the number of bands and color-coding them
appropriately (e.g., green-yellow-orange-red) could provide
additional visual insight into the SUT’s behavior. A single-
value metric for the adjustment speed can also be obtained as
the sum of query times above the SLA threshold over the first
N queries after a distribution change.

3) Cost: One of the main advantages of learned systems
is that they reduce the total cost of ownership (TCO) by
saving on database administration. Therefore, unlike tradi-
tional benchmarks where the TCO is often ignored, the new
benchmark must include metrics to provide guidance regarding
the potential savings from using a given system.

We propose to break down the cost-per-performance metrics
into training and execution time. Therefore, while the cost
per execution time remains similar to the classical setting,
the cost per training time provides new insights into the
SUT’s behavior. In learned systems with separate training and
execution phases, we should evaluate the cost of training on
different hardware (CPU, GPU, or TPU). Model training could
also run longer or use more data for a higher training cost.
The performance achieved for a given training cost reveals an
interesting trade-off compared to a traditional system that is
manually optimized. Figure 1d illustrates such a trade-off by
comparing the throughput achieved by the SUT for different
training costs with the throughput achieved by a traditional
baseline system that is manually tuned by a database adminis-
trator. In this case, the traditional system cost is a step function
representing different optimization efforts. In practice, drawing
such a plot would require collecting statistics on database
administrators and manual optimization costs. This plot allows
us to define a new metric: the training cost to outperform a

131

Authorized licensed use limited to: MIT Libraries. Downloaded on July 07,2022 at 16:21:08 UTC from IEEE Xplore. Restrictions apply.

Φ(workload) or Φ(data)

Th
ro

ug
hp

ut

Baseline
SUT

(a) Throughput per workload or data distribution

Time

To
ta

l Q
ue

rie
s

Traditional System
SUT

(b) Cumulative queries over time

Time

N
um

be
r o

f q
ue

rie
s

SLA met
SLA violated

(c) Service-Level Agreement (SLA) violations

Cost
Th

ro
ug

hp
ut

Traditional System
SUT

(d) Throughput per cost

Fig. 1: Illustration of various metrics for a new benchmark for learned systems.

traditional system. Comparing the training cost and execution
cost to the total cost of a traditional system allows users to
draw conclusions regarding the potential savings of using a
learned system. For example, it could be more profitable to use
a learned system with a GPU rather than rely on a manually
optimized system and its associated database administration
costs. It may be difficult to measure the training cost in learned
systems with online learning (e.g., reinforcement learning). In
this case, we propose to measure the system metrics (e.g.,
CPU, memory, GPU) corresponding to the training overhead
to estimate the training cost.

VI. CONCLUSIONS AND FUTURE WORK

We believe the community should start exploring ways to
benchmark data management systems with learned compo-
nents. In this paper, we first described how learned systems
fundamentally change the data management game and argued
that existing benchmarks are insufficient to properly under-
stand and compare the performance of these new systems. We
then presented additional requirements for a new generation
of benchmarking tools. Finally, we outlined how such bench-
marks should work and provided new metrics to complement
existing ones. We leave for future work the design and proper
specification of a new benchmark. We plan to implement
an initial version of this benchmark and evaluate different
learned systems. We welcome community feedback on our
initial ideas.

ACKNOWLEDGMENT

We would like to thank our anonymous reviewers for their
feedback that improved this work. This research is supported
by the Swiss National Science Foundation Early Postdoc Mo-
bility Fellowship Grant No. P2ELP2 195136, Google, Intel,
and Microsoft as part of the MIT Data Systems and AI Lab
(DSAIL) at MIT, and NSF IIS 1900933. This research was
also sponsored by the United States Air Force Research Lab-
oratory and the United States Air Force Artificial Intelligence
Accelerator and was accomplished under Cooperative Agree-
ment Number FA8750-19-2-1000. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the United States Air Force
or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

REFERENCES

[1] R. O. Nambiar and M. Poess, “The making of tpc-ds.” in VLDB, vol. 6,
2006, pp. 1049–1058.

[2] M. Poess and C. Floyd, “New tpc benchmarks for decision support and
web commerce,” ACM Sigmod Record, vol. 29, no. 4, pp. 64–71, 2000.

[3] P. Boncz, T. Neumann, and O. Erling, “Tpc-h analyzed: Hidden mes-
sages and lessons learned from an influential benchmark,” in Technology
Conference on Performance Evaluation and Benchmarking. Springer,
2013, pp. 61–76.

[4] S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons, R. Johnson,
I. Pandis, and R. Stoica, “Tpc-e vs. tpc-c: characterizing the new tpc-e
benchmark via an i/o comparison study,” ACM Sigmod Record, vol. 39,
no. 3, pp. 5–10, 2011.

132

Authorized licensed use limited to: MIT Libraries. Downloaded on July 07,2022 at 16:21:08 UTC from IEEE Xplore. Restrictions apply.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[6] A. Wolski, “Tatp benchmark description (version 1.0),” 2009.
[7] https://github.com/memsql/dbbench, 2020.
[8] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case

for learned index structures,” in Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018, 2018, pp. 489–504. [Online].
Available: https://doi.org/10.1145/3183713.3196909

[9] T. Kraska, M. Alizadeh, A. Beutel, H. Chi, A. Kristo, G. Leclerc,
S. Madden, H. Mao, and V. Nathan, “Sagedb: A learned database
system,” in CIDR, 2019.

[10] S. Idreos, K. Zoumpatianos, S. Chatterjee, W. Qin, A. Wasay,
B. Hentschel, M. Kester, N. Dayan, D. Guo, M. Kang et al., “Learning
data structure alchemy,” Bulletin of the IEEE Computer Society Techni-
cal Committee on Data Engineering, vol. 42, no. 2, 2019.

[11] B. Zhang, D. V. Aken, J. Wang, T. Dai, S. Jiang, J. Lao,
S. Sheng, A. Pavlo, and G. J. Gordon, “A demonstration of the
ottertune automatic database management system tuning service,”
PVLDB, vol. 11, no. 12, pp. 1910–1913, 2018. [Online]. Available:
http://www.vldb.org/pvldb/vol11/p1910-zhang.pdf

[12] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic
database management system tuning through large-scale machine
learning,” in Proceedings of the 2017 ACM International Conference on
Management of Data, ser. SIGMOD ’17, 2017, pp. 1009–1024. [Online].
Available: https://db.cs.cmu.edu/papers/2017/p1009-van-aken.pdf

[13] K. Kanellis, R. Alagappan, and S. Venkataraman, “Too many knobs to
tune? towards faster database tuning by pre-selecting important knobs,”
in 12th {USENIX} Workshop on Hot Topics in Storage and File Systems
(HotStorage 20), 2020.

[14] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska,
“Bao: Learning to steer query optimizers,” 2020.

[15] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,
O. Papaemmanouil, and N. Tatbul, “Neo: A learned query optimizer,”
Tech. Rep., 2019. [Online]. Available: http://arxiv.org/abs/1904.03711

[16] S. Krishnan, Z. Yang, K. Goldberg, J. M. Hellerstein, and
I. Stoica, “Learning to optimize join queries with deep reinforcement
learning,” CoRR, vol. abs/1808.03196, 2018. [Online]. Available:
http://arxiv.org/abs/1808.03196

[17] Z. Yang, B. Chandramouli, C. Wang, J. Gehrke, Y. Li, U. F. Minhas,
P.-Å. Larson, D. Kossmann, and R. Acharya, “Qd-tree: Learning data
layouts for big data analytics,” in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, 2020, pp.
193–208.

[18] V. Jain, J. Lennon, and H. Gupta, “Lsm-trees and b-trees: The best of
both worlds,” in Proceedings of the 2019 International Conference on
Management of Data, 2019, pp. 1829–1831.

[19] Z. Cao, S. Dong, S. Vemuri, and D. H. Du, “Characterizing, modeling,
and benchmarking rocksdb key-value workloads at facebook,” in 18th
{USENIX} Conference on File and Storage Technologies ({FAST} 20),
2020, pp. 209–223.

[20] A. Vogelsgesang, M. Haubenschild, J. Finis, A. Kemper, V. Leis,
T. Mühlbauer, T. Neumann, and M. Then, “Get real: How benchmarks
fail to represent the real world,” in Proceedings of the Workshop on
Testing Database Systems, 2018, pp. 1–6.

[21] S. Jain, D. Moritz, D. Halperin, B. Howe, and E. Lazowska, “Sqlshare:
Results from a multi-year sql-as-a-service experiment,” in Proceedings
of the 2016 International Conference on Management of Data, 2016,
pp. 281–293.

[22] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux, “Oltp-
bench: An extensible testbed for benchmarking relational databases,”
Proceedings of the VLDB Endowment, vol. 7, no. 4, pp. 277–288, 2013.

[23] A. G. Fior, J. A. Meira, E. C. de Almeida, R. G. Coelho, M. D.
Del Fabro, and Y. Le Traon, “Under pressure benchmark for ddbms
availability,” Journal of Information and Data Management, vol. 4, no. 3,
pp. 266–266, 2013.

[24] R. Marcus and O. Papaemmanouil, “Towards a hands-free query opti-
mizer through deep learning,” arXiv preprint arXiv:1809.10212, 2018.

[25] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and
A. Kemper, “Learned cardinalities: Estimating correlated joins
with deep learning,” in CIDR 2019, 9th Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA,

January 13-16, 2019, Online Proceedings. [Online]. Available:
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

[26] A. Kipf, M. Freitag, D. Vorona, P. Boncz, T. Neumann, and A. Kemper,
“Estimating filtered group-by queries is hard: Deep learning to the
rescue,” 1st International Workshop on Applied AI for Database Systems
and Applications, 2019.

[27] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, P. Chen, P. Abbeel,
J. M. Hellerstein, S. Krishnan, and I. Stoica, “Deep unsupervised
cardinality estimation,” PVLDB, vol. 13, no. 3, pp. 279–292, 2019.
[Online]. Available: http://www.vldb.org/pvldb/vol13/p279-yang.pdf

[28] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and
C. Binnig, “Deepdb: Learn from data, not from queries!” Proc. VLDB
Endow., vol. 13, no. 7, pp. 992–1005, 2020. [Online]. Available:
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf

[29] A. Dutt, C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and
S. Chaudhuri, “Selectivity estimation for range predicates using
lightweight models,” PVLDB, vol. 12, no. 9, pp. 1044–1057, 2019.
[Online]. Available: http://www.vldb.org/pvldb/vol12/p1044-dutt.pdf

[30] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
in Proceedings of the ACM Special Interest Group on Data Communi-
cation, 2019, pp. 270–288.

[31] A. Kristo, K. Vaidya, U. Çetintemel, S. Misra, and T. Kraska,
“The case for a learned sorting algorithm,” in Proceedings of the
2020 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1001–1016. [Online]. Available:
https://doi.org/10.1145/3318464.3389752

[32] J. Ding, V. Nathan, M. Alizadeh, and T. Kraska, “Tsunami: A learned
multi-dimensional index for correlated data and skewed workloads,”
Proc. VLDB Endow., vol. -, pp. –, 2020.

[33] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang,
B. Chandramouli, J. Gehrke, D. Kossmann, D. Lomet, and T. Kraska,
“ALEX: An updatable adaptive learned index,” in Proceedings of
the 2020 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 969–984. [Online]. Available:
https://doi.org/10.1145/3318464.3389711

[34] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska,
and T. Neumann, “SOSD: A benchmark for learned indexes,” Tech.
Rep., 2019. [Online]. Available: http://arxiv.org/abs/1911.13014

[35] R. Marcus, A. Kipf, A. van Renen, M. Stoian, S. Misra, A. Kemper,
T. Neumann, and T. Kraska, “Benchmarking learned indexes,” Proceed-
ings of the VLDB Endowment, vol. 14, no. 1, pp. 1–13, 2020.

[36] P. Negi, R. Marcus, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh,
“Cost-guided cardinality estimation: Focus where it matters,” in 2020
IEEE 36th International Conference on Data Engineering Workshops
(ICDEW). IEEE, 2020, pp. 154–157.

[37] C. Dwork, “Differential privacy: A survey of results,” in International
conference on theory and applications of models of computation.
Springer, 2008, pp. 1–19.

[38] A. Blum, K. Ligett, and A. Roth, “A learning theory approach to
noninteractive database privacy,” Journal of the ACM (JACM), vol. 60,
no. 2, pp. 1–25, 2013.

[39] V. Gupta, G. Miklau, and N. Polyzotis, “Private database synthesis for
outsourced system evaluation.” in AMW, 2011.

[40] N. Patki, R. Wedge, and K. Veeramachaneni, “The synthetic data vault,”
in 2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA). IEEE, 2016, pp. 399–410.

[41] S. Deep, A. Gruenheid, K. Nagaraj, H. Naito, J. Naughton, and S. Viglas,
“Diametrics: benchmarking query engines at scale,” Proceedings of the
VLDB Endowment, vol. 13, no. 12, pp. 3285–3298, 2020.

[42] P. Jaccard, “Étude comparative de la distribution florale dans une portion
des alpes et des jura,” Bull Soc Vaudoise Sci Nat, vol. 37, pp. 547–579,
1901.

[43] F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,”
Journal of the American statistical Association, vol. 46, no. 253, pp.
68–78, 1951.

[44] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola,
“A kernel method for the two-sample-problem,” Advances in neural
information processing systems, vol. 19, pp. 513–520, 2006.

133

Authorized licensed use limited to: MIT Libraries. Downloaded on July 07,2022 at 16:21:08 UTC from IEEE Xplore. Restrictions apply.

		2021-05-23T17:11:09-0400
	Preflight Ticket Signature

