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Abstract
Several programming languages use garbage collectors (GCs)
to automatically manage memory for the programmer. Such
collectors must decide when to look for unreachable ob-
jects to free, which can have a large performance impact on
some applications. In this preliminary work, we propose a
design for a learned garbage collector that autonomously
learns over time when to perform collections. By using rein-
forcement learning, our design can incorporate user-defined
reward functions, allowing an autonomous garbage collector
to learn to optimize the exact metric the user desires (e.g.,
request latency or queries per second). We conduct an initial
experimental study on a prototype, demonstrating that an
approach based on tabular Q learning may be promising.

CCS Concepts: • Computing methodologies→Machine
learning.

Keywords: Garbage collection, reinforcement learning
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1 Introduction
In many programming languages, automatic memory man-
agement is performed via garbage collection (GC). Genera-
tional GC, in which short-lived objects are stored in early
generations and longer-lived objects are slowly moved into
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later generations [17], is a common technique used in lan-
guages like Java and Python. A generational GC’s collection
policy – when the GC chooses to scan the heap for objects
that can be discarded – vary in complexity. For example,
Java’s garbage collector is sophisticated, representing sig-
nificant engineering effort [3]. On the other hand, Python’s
garbage collector is simpler, using a combination of reference
counting and generational "stop-the-world cycle detection"
at predefined intervals with three generations [23].
For some programs, the location where GC is performed

can impact performance [12]. For example, if a function
creates many allocations that will soon have their refer-
ence count reach zero (triggering an automatic collection),
garbage collection may waste time scanning these alloca-
tions. Alternatively, consider a web server: performing GC in
the middle of a request may deteriorate response latency [32].
Sophisticated users running large-scale CPython appli-

cations will often tune CPython’s GC policy to suit their
performance requirements [9], such as tail request latency.
Yet, many users may not even know the garbage collector
exists, or how to effectively tune it. Here, we ask: can effi-
cient custom-tailored generational GC policies be discovered
automatically, with minimal human interaction? Such an
automatic system could improve the performance of user
applications, and could potentially lessen the engineering
burden required to implement GC in new languages.

We present a preliminary sketch and prototype of a garbage
collection policy powered by reinforcement learning (RL).
While learning approaches to GC are not new [11, 12], exist-
ing approaches require pre-training on captured execution
traces, and try to minimize the time spent in GC mecha-
nisms. We target long-running programs that repeatedly
execute a core loop, such as a web server or a database, and
we attempt to optimize a custom reward function, such as
request latency or video delay. This potentially enables the
automatic learning of custom-tuned GCs without human
intervention. For example, in a soft real time system, such as
a video game, our system could learn to perform GC outside
of the critical loop, which may require more GC time, but
may have a smaller impact on the user’s experience. Sur-
prisingly, we found that classical tabular Q learning [31]
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is sufficient for quickly learning advanced GC policies in
our test applications, including several toy programs and a
real-world project management toolkit.

In this paper, we highlight some of the technical concerns
and early solutions we discovered when applying reinforce-
ment learning to garbage collection. Specifically, we found
that correctly tuning the algorithm’s prior beliefs (e.g., bias-
ing the system towards one action or another), along with a
small amount of reward shaping (e.g., modifying the feed-
back signal to induce good behavior), are critical to fast
convergence. The contributions of this paper are:

• To the best of our knowledge, we present the first
end-to-end learned garbage collection policy trained
entirely with reinforcement learning, while the pro-
gram is executing. Our prototype attempts to optimize
a user-provided and application-specific reward func-
tion, customizing a GC policy for the user’s domain.

• We highlight how a modified prior distribution and re-
ward shaping can aid an RL-powered garbage collector
in finding a good policy quickly.

• We present early experimental evidence suggesting
that a learned GC policy can substantially outperform
the (simple) default GC policy included with CPython
on a variety of benchmarks.

The rest of this paper is organized as follows: in Section 3,
we present our problem formulation and precisely define the
underlying Markov decision process (MDP). In Section 4, we
introduce our prototype garbage collector. We present early
experimental results in Section 5, and provide concluding
remarks and directions for future work in Section 6.

2 Related Work
Prior work by Jacek et al. gave a dynamic programming
algorithm to compute the optimal GC locations (in terms
of reducing GC execution time) given an execution trace
of a program on a particular input [12]. Later, Jacek et al.
showed that supervised learning techniques could be used to
generalize these execution traces to other inputs [11]. While
these techniques can be helpful for applications where trace
information is available, both works (1) require post-hoc
analysis of program traces, and do not automatically adapt
their policies in real time, and (2) minimize time spent in
GC mechanisms, as opposed to optimizing a user-defined
reward function (e.g., request latency). Many previous works
have applied reinforcement learning to various systems prob-
lems, including query optimization [22, 28], cluster sched-
uling [20], stream processing [29], software debloating [8],
and cloud provisioning [21, 27].

More broadly, applying reinforcement learning to systems
problems can be viewed as machine programming (MP) [7],
autonomously inventing new policies and adapting to new
environments. However, MP extends well beyond applica-
tions of reinforcement learning to systems. Other active

Figure 1. Generational garbage collection. New objects are
allocated in generation 1. When a generation is collected,
mark-and-sweep determines which allocations are freed and
which “survive.” Surviving allocations are promoted to the
next generation, ending with generation 3.

research areas in the MP space include hybrid program syn-
thesis techniques [6, 19], automatic test creation [1, 16], au-
tomatic bug repair [4], human-in-the-loop code recommen-
dation systems [10, 18, 33], and guaranteeing approximate
software solutions using formal methods [5, 14, 15]. This list
is non-exhaustive, and is intended to provide an abbreviated
snapshot of active research areas in MP.
Garbage collection is an active area of research [2, 3, 23,

34]. [26] proposes new user-facing APIs to more easily (man-
ually) customize garbage collectors. [13] suggests offloading
mark-and-sweep style computations to a GPU.

3 Overview & Formulation
In this section, we explain a simple model of a generational
garbage collector. Then, we give an overview of our approach
and specify the underlying Markov decision process (MDP).
Generational garbage collectors. Our model of a genera-
tional garbage collector is shown in Figure 1. When a new
object is allocated (F), it is placed in generation 1. Before allo-
cation occurs, a garbage collection policy determines whether
or not a particular generation is collected.1 We define collect-
ing a generation to mean: (1) determining which objects in
that generation and all younger generations are no longer
reachable (e.g., mark-and-sweep), (2) freeing those unreach-
able objects, and then (3) promoting objects in that generation
and all younger generations to the next generation (except
for objects in generation 3, which remain until freed).
Our model is agnostic to (1) whether or not orthogonal

garbage collection methods are also used (e.g., reference
counting), (2) whether entire allocations or just pointers are
stored in the generational heaps (and thus whether pointers
or entire objects are copied during promotion), and (3) the
method of determining whether an object is reachable (e.g.,
parallel mark-and-sweep or pointer tracking). Our model
does assume that the number of generations is constant and
finite. We refer to each generation as 𝐺1,𝐺2, . . . ,𝐺 |𝐺 | .
The goal of a garbage collection policy is to maximize a

user-specified reward function,𝑅.We assume that𝑅 is moder-
ately expensive to evaluate and noisy (e.g., can only be called
1A policy may decide to collect no generations at all.
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Figure 2. Learned GC architecture. When an allocation oc-
curs, we lookup the appropriate entry in the Q table to select
an action. Periodically, a user-provided reward signal is used
to update the values in the Q table.

every few seconds and may exhibit fluctuations). Without
loss of generality, we assume that the range of 𝑅() is [0, 1].
Example reward functions could be transactions-per-second
or negative tail request latency. While maximizing 𝑅() likely
involves minimizing time spent in garbage collection, this
may not always be the case: there may be opportune times to
perform garbage collection that take slightly longer to collect
but improve the user’s reward function, such as immediately
after a request is served or a file is updated.
LearnedGCoverview.Our learned garbage collectorworks
via a feedback loop that enables continuous improvement.
Figure 2 shows an overview of how the collector works.
When an allocation occurs, our system performs one of

two actions: (i) collect nothing or (ii) collect a particular
generation. This decision is made via looking up a value in
the Q table, a multi-dimensional sparse array which stores
the expected value2 of each potential action, indexed by
allocation sites and current memory usage. Intuitively, for
a specific allocation site (e.g., line of code), memory usage
(e.g., 50MB), and action (e.g., collect nothing), the Q table
contains one value, representing the expected reward from
performing that action in that situation. Actions are selected
to maximize the expected reward.

Periodically, the user supplies the garbage collector with a
reward, a quantity the user wishes to maximize. For example,
for a web application, the user may report the (inverse of)
average request latency every 5 seconds. When reported, the
learned GC updates the Q table, propagating information
about the user-provided reward signal to the appropriate
cells of the Q table. If the reward improves, the Q table will
be adjusted to favor the current policy. If the reward deterio-
rated, the Q table may be adjusted to explore other options.
Markov decision process (MDP). Here, we formulate our
problem as an MDP, the classical formulation used by most
reinforcement learning algorithms. For an overview ofMDPs,
see [30]. Roughly, MDPs are composed of a set of states 𝑆 and
a set of actions𝐴. An agent begins in some initial state 𝑠0 ∈ 𝑆 .
The agent may then choose an action 𝑎0 ∈ 𝐴. Afterwards, the

2A balance of long-term and short-term rewards, detailed in Section 4.

agent receives a reward 𝑟0, and a new state, 𝑠1. The agent’s
goal is to maximize the sum of its rewards over time, that is,
at time 𝑡 , the agent wishes to maximize

∑𝑡−1
0 𝑟𝑡 .

In our context, each state of an MDP contains features
describing the current allocation. In general, states may in-
clude any amount of information, such as the allocation site
(e.g., program counter position), current memory usage, the
time since the last collection, the size of each generation, etc.
In this preliminary work, we define each state 𝑠𝑖 ∈ 𝑆 to be a
tuple of 𝑠𝑖 = (𝑙𝑖 ,𝑚𝑖 ) where 𝑙𝑖 is the location of a particular
allocation (in terms of the program counter) and𝑚𝑖 is the
current memory usage of the program. Actions correspond
to collecting a particular generation, or doing nothing:

𝐴 = {𝐶𝐺1,𝐶𝐺2, . . . ,𝐶𝐺 |𝐺 |, ∅}
where 𝐶𝐺𝑛 corresponds to collecting generation 𝑛.

Because the optimal GC policy for some programs may be
to simply never collect, and to let memory grow unbounded,
we also assume that there is a user-specified memory thresh-
old𝑀 . If, during any allocation, the total memory usage of
the program exceeds𝑀 , a collection of the oldest generation
(a full collection) is forced, and the agent is penalized.

4 Learned GC
In this section, we describe howwe apply and slightly modify
classical tabular Q learning [31] to the MDP described in
Section 3. We note that tabular Q learning is distinct from
deep Q learning [24], and does not involve a neural network.
We first explain the layout of the Q table, then how inference
(decision-making) is performed using the table, then how the
table is updated based on the user-defined reward function.
Q table. The Q table is an array mapping every possible state
and action combination to a real number, 𝑄 : 𝑆 × 𝐴 → R,
representing a belief that a particular action should be cho-
sen in that state (higher values represent a stronger belief).
While the size of the state space is large (i.e., every possible
allocation site and every possible amount of memory usage),
we note that storing 𝑄 in memory is often tractable. First,
while a program may contain millions of possible allocation
sites (e.g., lines of code or program counter locations), the
number of those sites where an allocation actually occurs
is smaller. Second, we discretize the memory usage into a
fixed number of bins. The result creates a Q table that is
of manageable size even for large applications (e.g., under
16MB for a large, production-scale application). Each value
in the Q table is initially set to zero.
Inference.When an allocation occurs at state 𝑠𝑖 = (𝑙𝑖 ,𝑚𝑖 ),
with location 𝑙𝑖 and current memory usage𝑚𝑖 (discretized),
the optimal action according to the current Q table is:

𝑂𝑝𝑡 (𝑠𝑖 ) = max
𝑎∈𝐴

𝑄 (𝑠𝑖 , 𝑎)

Choosing to perform the optimal action 𝑂𝑝𝑡 (𝑠𝑖 ) for every
allocation represents a strategy of pure exploitation. This
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amounts to assuming that the Q table contains the correct
values in each cell. In stochastic environments, such a strat-
egy is likely to "get stuck" in a local minima: that is, find
some policy that works better than any small perturbation to
that policy, but is still not the ideal policy. To avoid this, we
use an epsilon-greedy policy [30] to encourage exploration.
An epsilon-greedy policy performs a random action with
probability 𝜖 , and plays according to the Q table with proba-
bility 1 − 𝜖 . Over time, as the Q table’s cells are populated
by better and better data, the value of 𝜖 is decayed.
Updates.When a reward is received from the user-defined
reward function, the cells of the Q table are updated. Since
allocations are performed more frequently than the reward
is measured, we must attribute parts of the reward to each
action. To do this, we naively assign the entire reward to each
action taken since the last time the reward was measured.
Then, for each state 𝑠𝑖 and each action 𝑎𝑖 executed, we update
each cell in the Q table using the classical update rule:

𝑄 (𝑠𝑖 , 𝑎𝑖 ) = 𝑄 (𝑠𝑖 , 𝑎𝑖 ) + 𝛼 × (𝑟 + 𝛾 ×𝑂𝑝𝑡 (𝑠𝑖+1) −𝑄 (𝑠𝑖 , 𝑎𝑖 ))
where 0 < 𝛼 ≤ 1 is the learning rate and 0 < 𝛾 ≤ 1 is the
discount factor. The learning rate 𝛼 controls how much old
information is valued against new information (larger values
put more weight on new information). In the context of
garbage collection for long-running services, the ideal policy
is unlikely to shift quickly in a short period of time, so a
small learning rate is likely appropriate. The discount factor
𝛾 controls how short-term rewards are valued against long-
term rewards. Because of our simple attribution scheme, and
because we generally care about the long-term performance
of long-running programs, a large 𝛾 is likely appropriate.

4.1 Optimizations & Discussion
Using the unmodified Q learning algorithm, as described
above, can lead to initially catastrophic policies. Since the
agent initially chooses actions entirely at random, the agent’s
initial performance may be much worse than a naive policy.
However, we have prior knowledge about how a garbage
collector should behave. We next discuss three optimizations
which integrate parts of the community’s collective wisdom
about garbage collection into our learned GC.
Optimization #1: priors (P). For the majority of alloca-
tions, the correct action is not to collect any generation. In
fact, by default, CPython collects at most every 700 allo-
cations 3. Without any tuning, the epsilon-greedy policy
described above will choose to collect some generation 3

4
of the time – a vast difference from CPython’s default 1

700 .
Thus, we propose a simplemodification to the epsilon-greedy
scheme to assign more weight to the "collect nothing" action.
Optimization #2: reward shaping (S).Reinforcement learn-
ing algorithms can often benefit from small modifications to
the reward function that do not change the optimal policy,
3https://docs.python.org/3/library/gc.html

but provide additional feedback to the agent [25]. When the
learned agent chooses to collect, we penalize the reward
value slightly based on how long the collection process took.
While minimizing time spent performing GC is not an ex-
plicit goal, doing so likely correlates with improvements to
the user’s reward signal (e.g., less time in GC means more
time processing requests). Thus, if the agent, based on the
rewards seen so far, is unsure whether one allocation site
or another is better for performing a collection, this reward
shaping encourages the agent to pick the allocation site that
resulted in a lower GC time.
Optimization #3: table initialization (I). When a pro-
gram’s memory usage surpasses a user-defined threshold
𝑀 , a collection is forced and the agent is penalized. Until
the agent hits this penalty, the "never collect" policy appears
good; the agent only learns that the "never collect" policy is
bad after encountering the penalty. However, we can "pre-
teach" the agent about this penalty via specially initializ-
ing certain cells of the Q table. For example, if the memory
threshold 𝑀 is 200MB and the program’s current memory
usage is 199MB, then we know a priori that choosing the ∅
"do nothing" action is likely to have a poor expected value.
We (lazily) initialize all cells in the Q table that represent
anything but a full collection (𝐶𝐺 |𝐺 |) when memory usage
is at or above𝑀 to -100, making them unlikely to be chosen.
Will this work for all programs? Garbage collectors are
general-purpose, and must work with a wide variety of appli-
cations. Many reinforcement learning approach, especially
the simple approach described here, requires seeing the same
or similar states multiple times in order to explore different
policies. This happens in long-running programs that exe-
cute a core loop, like a web server or a database. However,
in short-lived programs, there may not be sufficient time
or repetition to learn a policy. In future work, we plan on
investigating learning between runs of the same program,
or trying to learn a more general, program-agnostic policy.
Why not use neural networks?Modern Q learning tech-
niques often use a neural network (NN), or other function
approximator, instead of storing a table [24]. Using an NN
has significant advantages when the state space is extremely
large, and when the state is represented by a semantically-
rich feature vector. We initially experimented with neural
networks, but discovered that, in our case, the state space
(containing an allocation site and current memory usage) is
not unreasonably large, nor is it particularly semantically-
rich (two allocation sites being near each other does not
mean they behave similarly). Additionally, the tabular repre-
sentation of the Q table allows for fast inference times: an
action can be selected with only four array lookups and a
max reduction, along with handling an epsilon-greedy policy.
When NNs are used, this inference time is more expensive.
Since allocations happen frequently (often more than hun-
dreds per second), fast inference time is essential for GC.

https://docs.python.org/3/library/gc.html
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5 Experiments
We implemented a prototype learned garbage collector on
top of CPython 3.7.5. Here, we present a preliminary ex-
perimental study, demonstrating that our implementation
can learn a policy competitive with the built-in CPython
GC for certain programs. We note that while the CPython
GC is fairly simple, and may not represent a state-of-the-art
garbage collector, the CPython GC is nevertheless an inter-
esting baseline due to its widespread use. We use a learning
rate of 𝛼 = 0.1 and a discount factor of 𝛾 = 0.9999.
Test programs. We used three synthetic benchmarks and
one real application for testing. Rewards are reported ev-
ery two seconds. The memory threshold 𝑀 was set to the
observed median memory usage under the CPython GC.

• LRU Cache (synthetic): maintains large objects (con-
taining cyclic references) in an LRU cache. Random
queries, including lookups and inserts, are generated.
The reward is queries per second.

• Webserver (synthetic): a simple HTTP server that
responds to requests with a small webpage. This web-
page is requested repeatedly by a number of clients.
The reward is requests per second.

• Tx (synthetic): searches for cycles in randomly gen-
erated transaction graphs. The reward is transactions
searched per second.

• ProjMang (real): a full scale, open source project man-
agement application.4 A workload of requests is gener-
ated and executed with a pool of concurrent workers.
The reward is requests per second.

The LRU cache benchmark was designed to showcase the
potential of a learned GC: large objects stored in the cache
have reference cycles, and thus cannot be automatically col-
lected without a GC pass. Ideally, a garbage collector would
only search for cycles after an item had been removed from
the cache. The Tx benchmark was designed to maximize the
performance of the CPython GC: transactions become avail-
able for collection at exactly the collection rate of the default
CPython GC policy. The Webserver and ProjMang bench-
marks were designed to resemble real workd applications:
the webserver uses a popular Python library to serve a sim-
ple webpage, and the ProjMang benchmark is a full-fledged
application with hundreds of real deployments.
Variants. We tested four variants of our learned garbage
collector. “Q” represents textbook Q learning with none of
the optimizations described in Section 4.1. “Q + P” represents
Q learning with the “prior” optimization. “Q + PS” represents
Q learning with the “prior” and “reward shaping” optimiza-
tions, and “Q + PSI” represents Q learning with all three of
the optimizations described in Section 4.1.

4https://taiga.io/

Table 1.Median improvement in reward function compared
to the CPython garbage collector.

Application Q Q + P Q + PS Q + PSI

LRU Cache -94.96% 12.86% 17.34% 25.48%
Webserver -99.99% 256.1% 254.3% 268.2%
Tx -82.01% -28.49% -1.12% -0.01%
ProjMang -94.84% -3.43% -2.22% 5.42%

Experimental setup.We ran each program with each GC
variant for 5 minutes (except for ProjMang, which we ran
for 10 minutes to achieve consistent results) and tracked the
user-provided reward function and the memory usage of
each learned GC variant (including training overhead) and
the CPython garbage collector. Programs were executed on
a c2-standard-16 virtual machine via the Google Cloud. 5

Median behavior. Table 1 shows the median percent im-
provement in the reward function each variant achieved
compared to the CPython GC over the entire runtime of the
program. For example, the “Q + PSI” variant lead to around a
5% increase in requests per second for the ProjMang bench-
mark. Unsurprisingly, the unoptimzied “Q” variant is unable
to outperform the CPython GC on any benchmark, and suf-
fers from vastly degraded performance. Of each of the four
variants, “Q + PSI” consistently has the best performance.

The most drastic improvement is seen on the Webserver
benchmark. Here, the learned GC converges to a policy that
does no garbage collection between when a request is re-
ceived and when the response is queued for delivery by the
operating system. Garbage collection is performed immedi-
ately after this point, effectively overlapping I/O with the
GC computation. We note that this policy was fully learned
– the algorithm had no prior knowledge of I/O, system calls,
or sockets. We also note that our experiment may be over-
simplistic, as we used a simple webserver library6 that may
not fully take advantage of Python’s asynchronous I/O APIs.

No variant was able to improve on the CPython GC on the
Tx benchmark (although some variants result in only a minor
slowdown). By design, the Tx benchmark generates a large
number of long-lived objects containing cyclic references,
which causesmost collections to take a long time. This causes
explorations made by the learned GC to be costly.
Behavior over time. Figure 3 shows the reward and mem-
ory usage behavior of each variant (omitting “Q”, which
performed too poorly to be graphed on the same axes as
the other variants) and the CPython GC. While many rein-
forcement learning techniques can require hours or days to
train [20, 22, 29], each optimized learned GC variant is able
to learn a competitive policy quickly, often within seconds.

5https://cloud.google.com
6https://flask.palletsprojects.com/
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Figure 3. Reward and memory performance of each variant (minus “Q”) and the CPython garbage collector.

The second row of Figure 3 shows memory usage over
time, tracked via the CPython heap. Learned variants use
slightly more memory (2% on average) than CPython’s GC,
but this is after taking into account the size of the Q table
and action buffer (4 - 18MB in our experiments). Future work
focusing on compressing this table may be able to achieve
improved performance and lower memory usage.
What about the training overhead?When applying ma-
chine learning techniques to systems problems, it is natu-
ral to wonder about training overhead: the benefits of the
learned technique may be canceled out by an expensive train-
ing process. While this preliminary investigation does not
fully investigate these overheads, the results listed here do
include training overhead. In our initial prototype, training
is performed in a separate thread, which may not be practi-
cal for every application. For all applications, this training
process completed in under 10 milliseconds. Once training
completes, the old learned policy is replaced with a new pol-
icy via a single atomic pointer swap. The overhead within
the CPython interpreter is thus limited to looking up an ac-
tion based on the current policy (a hash table lookup), and
tracking the reward function (appending a value to a circular
buffer). While the goal here is simply to showcase a promis-
ing prototype, we plan to fully investigate the performance
properties of these implementation choices in future work.
Why not just tune the CPython GC? We found the de-
fault tuning parameters of the CPython GC to be close to
optimal. After an exhaustive grid search, we were unable to
find any tuning of CPython GC that improved performance
without spacing out collections so much that memory us-
age ballooned. It is unsurprising that the default settings are
performant, as they have been optimized for general use.

6 Future Work and Conclusion
We have presented a initial prototype of a garbage collector
powered by reinforcement learning. Our design incorporates

a user-defined reward function, and customizes itself to the
user’s application on the fly using tabular Q learning.

Many challenges remain. In the future, we plan to:
• Examine the robustness of the learned garbage collec-
tor to misspecified rewards functions, and assess how
difficult specifying a proper reward function might be
for an end user.

• Further optimize the training and inference process
described here, specifically quantifying how training
overhead may interfere with program performance.
More advanced methods, such as overlapping table
updates with program execution, may be required.

• Investigate how more advanced reinforcement learn-
ing algorithms could be effectively applied to garbage
collection.

• Greatly expand our experimental analysis to a wider
ranger of real-world applications, and further study
the policies that are discovered by the learned garbage
collector.
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