
Low Bitrate Compression of Video with
Dynamic Backgrounds

Solomon Garber, Ryan Marcus∗, Antonella DiLillo and James Storer

Brandeis University ∗MIT CSAIL
{solomongarber,dilant,storer}@brandeis.edu ryanmarcus@csail.mit.edu

Abstract: We present a technique for low bitrate two-layer sprite encod-
ing and decoding of videos with semantically salient foregrounds and dynamic
background motion, such as an outdoor sports game. By representing the back-
ground motion using static descriptors, our technique improves visual quality
in the video background while preserving the fidelity of semantically impor-
tant foreground regions. Our technique can target lower bitrates than may be
appropriate for codecs such as AVC and HEVC.

1 Introduction
Dynamically moving background textures in video are challenging to compress.

High contrast, moving video background content, such as trees blowing in the wind,
require significantly more bits to encode than still backgrounds at the same visual
quality or signal fidelity. For applications where a low bitrate is required, background
motion can result in distracting compression artifacts. Furthermore, since standard
video codecs encode the background and foreground together in a single pane, dy-
namic background motion will necessarily cause degradation of visual quality and
signal fidelity in the semantically salient foreground video regions at a fixed bitrate.
Bits saved on background encoding can be used for higher fidelity in the foreground,
which may be more semantically important and visually salient.

Dynamic backgrounds may require a high bitrate to compress accurately even
though they have low semantic content. In our previous work [1] we presented a lossy
encoding technique for dynamic video backgrounds. This approach demonstrated
that a static motion sprite representation (a sprite image, vibration modes, and a
small number of per-frame global motion parameters) can be used to reconstruct
videos containing dynamic oscillations without foreground object motion. By using a
general model of oscillatory motion, [1] was able to achieve significantly lower bitrates
than standard codecs at similar visual quality for this limited class of video.

The techniques proposed in [1] target videos containing simple oscillatory motion,
and did not directly apply to more complex videos, such as those with oscillatory
backgrounds but complex foregrounds (like a video of a sports game with swaying
trees in the background). However, recent advances in deep learning (e.g. [2]) allow
automatic pixel-level segmentation of images based on their content. These semantic
masks can be used to separate foreground and background regions in traditionally
challenging scenarios such as videos containing dynamic background motion.

In this work, we present an end-to-end encoder and decoder system that combines
these semantic masks with the motion sprite representation of [1]. The result is a low

{solomongarber,dilant,storer}@brandeis.edu
ryanmarcus@csail.mit.edu


bitrate representation of videos containing dynamically oscillating background motion
and semantically salient foreground content. Videos produced using our system have
significantly better visual quality than state-of-the-art codecs like AVC and HEVC
at very low bitrates, even lower than bitrates these standards intended to target.

2 Related Work
Motion Spectrum Based Video Synthesis Eulerian video motion processing
[3, 4, 5, 6, 7] has allowed researchers to visualize [3, 5, 4, 6, 8], control [9], and even
hear [10] various dynamic and oscillatory motions in video. Analyzing the power
spectrum of the approximately oscillatory motion has been shown to reveal physical
characteristics of the video objects [8, 6]. Furthermore, the work of [9] demonstrated
that frequency domain slices of these motion spectra (at resonant frequencies), which
had previously been used by [8] to visualize the modal shapes (amplitude and phase)
of these vibration modes, could be used to reanimate a video containing such modal
vibrations using arbitrary user-provided forcing functions and a simple physical sim-
ulation. Previously [11] had shown an alternate method for reanimating videos con-
taining dynamic textures.

Content Based Video Encoding The existing MPEG-4 part 2 video standard,
now almost 20 years old, offers the option of sprite coding, where a static video
background can be represented by a single frame which is cropped at each time in-
terval based on the angle of view of the camera. Along these lines, some work has
been done on semantic segmentation for video compression, including work address-
ing non-oscillatory motion [12], specially encoding skin tone [13], and static texture
modeling [14].

Foreground Segmentation One way to generate a sprite in the presence of fore-
ground motion is to segment and remove the foreground. Many techniques have been
developed for video foreground segmentation, often using cues from motion [15, 16].
Much recent work has addressed pixel level semantic and instance image segmentation
techniques e.g. [2, 17, 18, 19], and these techniques are rapidly improving.

3 Dynamic Motion Sprites
In previous work [1], we have shown how vibration modes can be used to compress

dynamically oscillating video content at low bitrates and improved visual quality. We
extract modes of motion using the techniques of [8] and show how modal states
can be estimated for each frame of video and used to approximately reconstruct the
resonant motion dynamics of these sorts of subjects. After a brief overview of the
techniques of [1], we show how these techniques can be applied to videos where the
dynamic background is often or always occluded by a foreground subject exhibiting
more general object motion.

In [1], a random frame from video stream containing oscillatory motion is chosen
to be used as a sprite. Each frame from a section of video is then taken into the
wavelet domain for phase based motion estimation. The complex phase response of
these wavelets are linear in the local motion, meaning the changes in phase over time



of oriented complex valued wavelet filters can be used to estimate the motions con-
tained in a video [5]. If the background motion is modeled as a damped oscillation,
the transfer function of which is a Lorentzian distribution s2

(x−ω)2+s2
with shape and

frequency parameters s and ω, then the central frequency and damping of the back-
ground video oscillations can be found by (1) processing these spatial displacements
in the frequency domain and (2) finding peaks in the global amplitude response of
the frame-wide motion estimates. The local motion estimates are used to generate
a motion spectrum from which the modal frequencies are estimated. Once the cen-
tral frequency is estimated, the slice of the frequency response of local motions at
the central frequency indicates the relative amplitudes and phases of the background
oscillations around that frequency at each spatial location. This frequency slice is
used as a spatial basis for the dynamic motion in the background video, to be used
during decoding to warp the background sprite based on global motion parameters.
Once the modal frequency and shape have been determined, the background video
is streamed all the way through, with motion estimates taken at each frame, filtered
around the central frequency, and projected onto the modal basis using a complex
inner product. The response of this inner product at each frame is stored as a global
motion parameter to be used during decoding. In summary, all that is required to
store the entire background video segment is three static frames and four floats of
global motion information per frame.

4 Encoder
Video coding using dynamic motion sprites requires sprite generation, motion

parameter estimation, and foreground object encoding. Our technique, depicted in
Figure 2, uses segmentation masks generated by a pre-trained Mask R-CNN [2] model
as foreground masks, to generate separate foreground and background video streams.
Missing background regions are filled in for dynamic motion sprite generation, and
the foreground video region is encoded using either HEVC or AVC. We also keep
a low resolution video of the segmentation mask, which is spatially upscaled during
decoding and used as a guide for multiplexing the two video streams together.

4.1 Semantic Foreground Subtraction
In order to generate the background sprite, motion modes, and global motion

parameters, as described in [1], we first remove the foreground objects from the input
video to produce a clean stream of background video for the sprite encoding. If the
foreground motion is still visible in the background video stream, or if it is replaced
by other motion artifacts in these regions, the oscillatory motion assumption of the
motion sprite algorithm will be in error and the modes and motion parameters may
produce visual artifacts reflecting these errors. Simply blacking out the masked area
does not remove the appearance of motion from the video stream, and inpainting on
a per-frame basis is prone to introducing motion and texture artifacts which will also
corrupt the sprite generation process. If the background were static, or only gradually
changing, holes in the background video could be filled directly with the background
from the previous frame, as in [20]. We take a similar strategy, however since our
backgrounds are moving dynamically, this approach would introduce sharp spatial



Figure 1: Sample frames from three versions of a 1 minute 50 seconds 1080p video,
23.976 fps, a total of 2638 frames. Top: video encoded with AVC at original quality
(469,742,075 bytes, 0.687 bpp, approximately 34 Mbit/s). Middle: same frame en-
coded by AVC at low quality settings (3,544,854 bytes, .0052 bpp, approximately 258
Kbit/s). Bottom: same frame encoded with our method (3,508,588 bytes or .0051
bpp, approximately 255 Kbit/s). The right two columns show closeups of the visual
quality achieved. Click on the still image to view the corresponding video or go to:
rm.cab/semvid1

discontinuities in the resulting video. To mitigate this issue, we take the masked
region from the previous frame, and morphologically dilate the mask as shown in
Figure 3 to create a buffer region separating the current background from the previous
background, and fill in this region with inpainted content.

Once the foreground has been removed from the video feed, the background stream
can be processed and compressed into static sprite, motion modes, and global motion
signal as in [1]. The modes are compressed using JPEG image compression (ampli-
tude and phase are stored separately with amplitude stored in log scale) as is the
background sprite. The global motion signal is stored without compression, but since
they only require 4 floats per frame of video the size of this signal is minimal compared
to the other components of the background representation, even without compression.
JPEG quality of the sprite as well as the modes can be used to control the bitrate
of the background sprite, however since the size of the background representation is

http://rm.cab/semvid1
http://rm.cab/semvid1


Figure 2: Our two level video encoder pipeline. Foreground regions are separated
and compressed using a standard codec with image persistence. Masks are spatially
downsampled and compressed with a standard codec. Background regions are filtered
and reduced to a static sprite, complex valued modes of horizontal and vertical motion,
and frame-wide global motion parameters. Frames are taken from the video shown
in Figure 1.

Figure 3: Our semantic segmentation based foreground subtraction feedback pipeline.
Foreground regions are removed and filled in using feedback and inpainting. Frames
are taken from the video shown in Figure 1

almost unaffected by the duration of the video, the sprite image quality can be much
higher than the foreground video stream with minimal impact on the overall bitrate.

4.2 Foreground Object Compression
Once the foreground has been separated, it must be stored in such a way that

is amenable to fast decoding and low bitrates. The foreground and mask videos are
encoded separately, using AVC and HEVC in our experiments. Where possible we use
HEVC, however, on some videos our technique targets lower bitrates than the HEVC
tool we used (ffmpeg libx265) allows (this is the case, for example in Figure 1). In



Figure 4: Sample frames from three versions of a 1 minute 48 seconds 1080p video,
59.94 fps, a total of 5868 frames. Top: video encoded with AVC at original quality
(397,928,297 bytes, 0.26 bpp, approximately 29 Mbit/s). Middle: same frame en-
coded by AVC at low quality settings (3,438,857 bytes, .0023 bpp, approximately 255
Kbit/s). Bottom: same frame encoded with our method (3,436,422 bytes or .0023
bpp, approximately 255 Kbit/s). The right two columns show closeups of the visual
quality achieved. Click on the still image to view the corresponding video or go to:
rm.cab/semvid4

such instances, the AVC ffmpeg encoder, which was able to achieve lower bitrates,
was employed (in these examples, for the purposes of comparison, we also used AVC
to encode the foreground). The foreground regions generated by Mask R-CNN are
large enough that the mask video can be stored at a significantly lower resolution
than the input video, to be upsampled during decoding. For codecs that do not
support video object encoding, such as the ffmpeg HEVC library libx265, storing the
foreground video only with the background entirely blacked out can increase ringing
artifacts in the foreground as a result of increased contrast between the foreground
object and black background. Furthermore, the temporal and spatial irregularities in
the masks create challenging videos for these standard codecs. To reduce the ringing
artifacts in the foreground, we dilate the mask region to preserve contrast at the
object boundaries. To mitigate the temporal artifacts of masked regions appearing
and disappearing, we make a foreground stream where nothing is ever deleted until

http://rm.cab/semvid4
http://rm.cab/semvid4


Figure 5: Sample still frames taken from mask video before image persistence is added
(top) and their corresponding frames with image persistence. (bottom) Frames are
taken from the foreground of the video shown in Figure 4

it is written over, creating a foreground video with image persistence as in Figure 5.

5 Decoder
The final encoded video contains a static background sprite, vertical and horizontal

complex motion modes, a time domain global motion signal, a foreground video and
a mask video. For each frame of input video, the motion modes are scaled by their
respective complex motion parameter and used as a dense flow field to warp the
background sprite as in [1]. The corresponding foreground and mask frames are
then decoded, and the mask frame is upscaled to the full video resolution using
bicubic interpolation. A threshold is applied to the mask followed by morphological
operations to clean up discontinuities due to compression artifacts. The mask is then
used to overlay the foreground video stream onto the dynamically warped background.

6 Case Study: Outdoor Soccer Video
A natural application for our system is low bandwidth streaming of outdoor sports

events such as a soccer game. We compare our method to HEVC (ffmpeg libx265) on
a 1080p video clip of a soccer game at Brandeis University where players are moving
in the foreground and trees are blowing in the background. The video clip is 2 minutes
and 40 seconds in duration, shot at 23.976 frames per second, a total of 3714 frames.
In the first experiment the field of view is fixed, covering only the eastern half of the
field. In the second experiment we simulate a panning camera capable of following
the play, by dynamically cropping a 4k video that covers the whole field.

Stable Camera The clip when encoded with our HEVC tool at its default good
quality setting was 62,688,079 bytes (0.065 bpp, approximately 3 Mbit/s). With
our HEVC tool at its lowest quality setting, the clip was 2,040,633 bytes (0.0021
bits per pixel, approximately 102 Kbit/s). Our encoder produced a clip of 2,032,943
bytes (0.0021 bits per pixel, 102 Kbit/s). Of those bytes, only 410,033 bytes were



Figure 6: Still frame from the soccer video (left), the video compressed by HEVC
(middle), and our method (right). Click on the still image to view the corresponding
video or go to rm.cab/semvid6

Figure 7: A frame taken from our static soccer video (left) and the corresponding
foreground mask generated by Mask R-CNN (right)

used for the background, leaving more bytes for encoding only the foreground using
HEVC. As described in section 3 and [1], adding successive frames to this background
representation requires only 2 complex numbers per frame. For example, doubling
the length of our example video (from 3714 frames to 7428 frames), and assuming 8
bytes per complex number, the additional space required for the background would
result in only 59,424 bytes, allowing for even more bits to represent the foreground
at the same bitrate. The results of this experiment are shown in Figure 6. As can
be seen from the video, the masks produced by Mask R-CNN are not perfect, and
sometimes miss the ball or partially occluded players. However the results are good
enough to facilitate a higher overall visual quality than standard codecs at the same
bitrate despite some irregularities.

Simulated Camera Pan In practice, sports games are often video taped with a
panning camera that is following the action. However, a different approach, which is
feasible with current technology, is to dynamically crop a high resolution video (e.g.
4k or higher) that covers the whole field. While it may be possible to recover dynamic
motion sprites under camera panning conditions, it is certainly simpler with a still
camera to remove the need of estimating camera position as well as eschewing motion
blur introduced by analog camera motion. For example, [21] describes an automatic
system for dynamically cropping high resolution hockey footage around the action.

Along these lines, a 4k resolution video was dynamically cropped to simulate a
camera operator panning across the field, as shown in Figure 8. Simulating panning
after the fact allowed us to create a 4k motion sprite the size of the whole field. For

http://rm.cab/semvid6
http://rm.cab/semvid6
http://rm.cab/semvid6
http://rm.cab/semvid6


this example, the mask was cropped to simulate the viewing angle of the panning, but
the foreground video with image persistence was stored at the full resolution, with
only visible regions changing at each frame. The sprite, motion modes, and global
motion signal were generated from the full resolution video. The cropping parameters
were stored along with the global motion parameters and used during decoding.

Figure 8: Three sample frames from our compressed simulated camera pan video. On
the left is shown the position of the frame on the warped background sprite, and on
the right is our decoded frame. Click on the still image to view the corresponding
video or go to rm.cab/semvid8 where a comparison with HEVC can also be seen.

The clip when encoded with our HEVC tool at its default good quality setting
was 63,338,204 bytes (0.066 bits per pixel, approximately 3 Mbit/s). With our HEVC
tool at its lowest quality setting, the clip was 2,557,625 bytes (0.0027 bits per pixel,
aprroximately 128 Kbit/s). We then set our encoder to approximately match the
same rate (2,557,435 bytes, 0.0027 bits per pixel, or approximately 128 Kbit/s). Our
encoder compressed the background of this video to only 530,689 bytes, leaving more
bits for encoding only the foreground using HEVC.

7 Conclusion
We have presented a technique that can be used for very low bitrate video com-

pression where visual quality may be improved over encoding with AVC or HEVC at

http://rm.cab/semvid8
http://rm.cab/semvid8


comparably low rates. The method incorporates our previous work for low cost static
representations of dynamic backgrounds allowing bits that are no longer needed to
produce a visually acceptable background to be allocated to the semantically more
important foreground material. Acquisition of the video at high resolution allows for
the construction of larger dynamic sprites that can support a panning field of view.
We expect that continued improvements in machine learning algorithms for automatic
segmentation will not only improve the quality of our system at low bitrates but also
allow the possibility of employing it at higher quality. In addition, our system would
benefit from improved compression of foreground video objects.

References
[1] S. Garber et al. “Compact Representations of Dynamic Video Background Using

Motion Sprites”. In: 2019 Data Compression Conference (DCC). IEEE. 2019.
[2] K. He et al. “Mask R-CNN”. ICCV (2017), pp. 2980–2988.
[3] H.-Y. Wu et al. “Eulerian video magnification for revealing subtle changes in the

world”. TOG 31 (2012), 65:1–65:8.
[4] N. Wadhwa et al. “Phase-based video motion processing”. TOG 32.4 (2013), p. 80.
[5] N. Wadhwa et al. “Riesz pyramids for fast phase-based video magnification”. ICCP

(2014).
[6] J. G. Chen et al. “Video camera–based vibration measurement for civil infrastructure

applications”. Journal of Infrastructure Systems 23.3 (2016).
[7] E. Prashnani et al. “A Phase-Based Approach for Animating Images Using Video

Examples”. Computer Graphics Forum 36.6 (2017).
[8] A. Davis et al. “Visual vibrometry: Estimating material properties from small motion

in video”. CVPR (2015), pp. 5335–5343.
[9] A. Davis, J. G. Chen, and F. Durand. “Image-space modal bases for plausible manip-

ulation of objects in video”. TOG 34.6 (2015), p. 239.
[10] A. Davis et al. “The visual microphone: passive recovery of sound from video”. TOG

33.4 (2014), p. 79.
[11] G. Doretto et al. “Dynamic textures”. IJCV 51.2 (2003), pp. 91–109.
[12] A. Smolic, T. Sikora, and J.-R. Ohm. “Long-term global motion estimation and its

application for sprite coding, content description, and segmentation”. IEEE Transac-
tions on Circuits and Systems for Video Technology 9.8 (1999), pp. 1227–1242.

[13] U. Khan, M. Cheema, and N. Sheikh. “Adaptive video encoding based on skin tone
region detection”. In: ISCON. Vol. 1. IEEE. 2002, pp. 129–134.

[14] A. Dumitras and B. G. Haskell. “An encoder-decoder texture replacement method
with application to content-based movie coding”. IEEE Transactions on Circuits and
systems for Video Technology 14.6 (2004), pp. 825–840.

[15] M. Kunter, J. Kim, and T. Sikora. “Super-resolution mosaicing using embedded hy-
brid recursive folow-based segmentation”. In: ICSPIC. IEEE. 2005, pp. 1297–1301.

[16] A. Krutz et al. “Motion-based object segmentation using sprites and anisotropic dif-
fusion”. In: Eighth International Workshop on Image Analysis for Multimedia Inter-
active Services (WIAMIS’07). IEEE. 2007, pp. 35–35.

[17] O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional networks for biomed-
ical image segmentation”. In: MICCAI. Springer. 2015, pp. 234–241.

[18] R. Hu et al. “Learning to segment every thing”. In: CVPR. 2018, pp. 4233–4241.
[19] A. Kirillov et al. “Panoptic segmentation”. In: CVPR. 2019, pp. 9404–9413.
[20] S. Garber et al. “Visual Lecture Summary Using Intensity Correlation Coefficient”.

In: IMVIP. 2017, pp. 68–75.
[21] H. Pidaparthy and J. Elder. “Keep Your Eye on the Puck: Automatic Hockey Videog-

raphy”. In: WACV. IEEE. 2019, pp. 1636–1644.


	Introduction
	Related Work
	Dynamic Motion Sprites
	Encoder
	Semantic Foreground Subtraction
	Foreground Object Compression

	Decoder
	Case Study: Outdoor Soccer Video
	Conclusion

