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ABSTRACT
Join order selection plays a significant role in query performance.

However, modern query optimizers typically employ static join

order enumeration algorithms that do not incorporate feedback

about the quality of the resulting plan. Hence, optimizers often re-

peatedly choose the same bad plan, as they have no mechanism for

“learning from their mistakes.” Here, we argue that deep reinforce-

ment learning techniques can be applied to address this challenge.

These techniques, powered by artificial neural networks, can au-
tomatically improve optimizer decision-making by incorporating

feedback. Towards this goal, we present ReJOIN, a proof-of-concept
join enumerator, as well as preliminary results indicating that Re-

JOIN can match or outperform the PostgreSQL optimizer in terms

of plan quality and join enumeration efficiency.
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1 INTRODUCTION
Identifying good join orderings for relational queries is one of the

most well-studied problems in database systems (e.g., [6, 12, 13,

18]), as the selected join ordering has a drastic impact on query

performance [11]. A primary challenge of join order selection is

enumerating a set of candidate orderings and identifying the most

cost-effective ordering. Searching a larger candidate space increases

the odds of finding a low-cost ordering, at the cost of spending

more time on query optimization. Join order enumerators thus

simultaneously seek to minimize the number of plans enumerated

and the final cost of the chosen plan.

Traditional DBMSes employ a variety of join enumeration strate-

gies. For example, System R [18] uses dynamic programming to find

the left-deep join tree with the lowest cost, while PostgreSQL [1]
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greedily selects low-cost pairs of relations until a tree is built. Many

commercial products (e.g., [3]) allow a DBA to control the size of

the candidate plan space via structural constraints (e.g., left-deep

plans only), or by cutting off enumeration after some elapsed time.

Unfortunately, these heuristics often miss good execution plans.

More importantly, traditional query optimizers rely on static strate-
gies, and hence do not learn from past experiences. Traditional

systems plan a query, execute the query plan, and then forget they

ever optimized this query. Because of the lack of feedback, a query

optimizer may select the same bad plan repeatedly, never learning

from its previous good or bad choices.

In this paper, we share our vision of a learning-based optimizer

that leverages prior experience, aiming to learn how to optimize fu-

ture queries more effectively (i.e., better query plans) and efficiently

(i.e., less time on optimization). We introduce a novel approach to

query optimization that is based on deep reinforcement learning
(DRL) [5], a process by which a machine learns a task through con-

tinuous feedback with the help of a neural network. We argue that

existing deep reinforcement learning techniques can be leveraged

to provide better query plans using less optimization time.

As a first step, we present ReJOIN, a proof-of-concept join or-

der enumerator entirely driven by deep reinforcement learning. In

Section 2, we describe ReJOIN. In Section 3, we provide promising

preliminary results that show ReJOIN can outperform PostgreSQL’s

join enumeration process in terms of effectiveness and efficiency. To

the best of our knowledge, this work is the first to make query opti-

mization decisions using deep reinforcement learning. Concurrent

work [14] is examining deep learning methods for learning repre-

sentations of each step of the query optimization process. Previous

adaptive methods [4, 7, 19] have used query execution feedback to

repair incorrect statistical estimations.

2 THE REJOIN ENUMERATOR
Next, we present our proof-of-concept deep reinforcement learning
join order enumerator, which we call ReJOIN.

Join Enumeration ReJOIN assumes a traditional cost-based

approach to query optimization used by many modern DBMSs

(e.g.,[1, 10]). Specifically, given a SQL query as an input, a join order
enumerator searches a subspace of all possible join orderings and

selects the “cheapest” ordering (according to the cost model) for

execution. This enumeration does not perform index selection, join

operator selection, etc. – these tasks are left to other components

of the DBMS optimizer. A join ordering is captured by a binary tree,

in which each leaf node represents a base relation. Figure 1 shows

three possible join orderings for the relations A, B, C , and D.
Reinforcement Learning Reinforcement learning assumes [5]

that an agent interacts with an environment. The environment

tells the agent its current state, st , and a set of potential actions

At = {a0,a1, . . . ,an } the agent may perform. The agent selects an

action a ∈ At , and the environment gives the agent a reward rt
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SELECT * FROM A, B, C, D WHERE ...;

Figure 1: Three different join orderings

based on that action. The environment additionally gives the agent

a new state st+1 and a new action set At+1. This process repeats

until the agent reaches a terminal state, where no more actions

are available. This marks the end of an episode, after which a new

episode begins. The agent’s goal is to maximize its reward over

episodes by learning from its experience (previous actions, states,

and rewards). This is achieved by balancing the exploration of new

strategies with the exploitation of current knowledge.

OverviewWe formulate the join order enumeration process as a

reinforcement learning problem. Each query sent to the optimizer

represents an episode, and ReJOIN continuously learns as queries

are sent. Each state will represent subtrees of a binary join tree, in

addition to information about query join and selection predicates.

Each action will represent combining two subtrees together into a

single tree. A subtree can represent either an input relation or a join

between subtrees. The episode ends when all input relations are

joined (a terminal state). At this point, ReJOIN assigns a reward to

the final join ordering based on the optimizer’s cost model. The final

join ordering is sent to the optimizer, and the produced physical

plan is executed by the DBMS.

The framework of ReJOIN is shown in Figure 2. Formally, given

a query q accessing relations r1, r2, . . . , rn , we define the initial

state of the episode for q as s1 = {r1, r2, . . . , rn }. This state is ex-
pressed as a state vector. This state vector is fed through a neural

network [16], which produces a probability distribution over poten-

tial actions. The action set Ai for any state is every unique ordered

pair of integers from 1 to |si |, inclusive: Ai = [1, |si |] × [1, |si |].
The action (x,y) ∈ Ai represents joining the xth and yth elements

of si together. The output of the neural network is used to select

an action (i.e., a new join), which is sent back to the environment,

which transitions to a new state. The state si+1 after selecting the
action (x,y) is si+1 = (si − {si [x], si [y]}) ∪ {si [x] ▷◁ si [y]}. The
new state is fed into the neural network. The reward for every

non-terminal state (a partial ordering) is zero, and the reward for

an action arriving at a terminal state sf (a complete ordering) is

the reciprocal of the cost of the join tree t , M (t), represented by

sf ,
1

M (t ) . Periodically, the agent uses its experience to tweak the

weights of the neural network, aiming to earn larger rewards.

Example Figure 3 shows a potential episode for a query involving

four relations: A, B, C , and D The initial state is s1 = {A,B,C,D}.
The action set A1 contains one element for each ordered pair of

relations, e.g. (1, 4) ∈ A1 represents joining A with D, and (2, 3) ∈

A1 represents joining B withC . The agent chooses the action (1, 3),

representing the choice to joinA andC . The next state is s2 = {A ▷◁
C,B,D}. The agent next chooses the action (2, 3), representing

the choice to join B and D. The next state is s3 = {A ▷◁ C,B ▷◁
D}. At this point, the agent has only two possible choices, A3 =

{(1, 2), (2, 1)}. Supposing that the agent selects the action (1, 2), the
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Figure 2: The ReJOIN Framework

next state s4 = {(A ▷◁ C) ▷◁ (B ▷◁ D)} represents a terminal state.

At this point, the agent would receive a reward based on the cost

model’s evaluation of the final join ordering.

2.1 State Vectors
ReJOIN requires a vector representation of each state that captures

information about the join tree structure and the join/selection

predicates. Next, we outline a simple vectorization strategy which

captures this information and demonstrates that reinforcement

learning strategies can be effective even with limited input data.
Tree Structure To capture tree structure data, we encode each

binary subtree (i.e., join ordering decided so far) x ∈ sj as a row
vector v of size n, where n is the total number of relations in the

database. The value vi is zero if the ith relation is not in x , and
equal to

1

h(i ,x ) otherwise, where h(i, x) is the height of the relation

ri in the subtree x (the distance from the root). In the example in

Figure 3, the first row of the tree vector for the second to last state,

{A ▷◁ C,B ▷◁ D}, corresponds to (A ▷◁ C). The third column of the

first row has a value of
1

2
, corresponding to C having a height of 2

in the subtree. The second column of the first row has a value of

zero since the relation B is not included in the subtree.

Join Predicates To capture critical information about join pred-

icates, we create an n × n binary symmetric matrix m for each

episode. The valuemi , j is one if there is a join predicate connecting

the ith and the jth relation, and a zero otherwise. This simple rep-

resentation captures feasible equi-joins operations. Figure 3 shows

an example of such a matrixm. The valuem2,1 =m1,2 = 1 because

of the predicate A.id = B.id. The valuem2,3 =m3,2 = 0 because

there is no join predicate connecting B and C .
Selection Predicates The selection predicate vector is a k dimen-

sional vector, where k is the total number of attributes in the data-

base (the total number of attributes across all relations). The ith
value is one when the ith attribute has a selection predicate in

the given query, and zero otherwise. This reveals which attributes

are/are not used to filter tuples. For example, in Figure 3 the value

corresponding to B.a2 is one because of the predicate B.a2 > 100.

2.2 Reinforcement Learning
Policy gradient ReJOIN relies on policy gradient methods [22],

one particular subset of reinforcement learning. Policy gradient re-

inforcement learning agents select actions based on a parameterized
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SELECT * FROM A, B, C, D WHERE A.id = B.id AND
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Figure 3: Two possible join order selection episodes

policy πθ , where θ is a vector that represents the policy parameters.

Given a state st and an action set At , the policy πθ outputs a score

for each action in At (in our context, a score for combining two

join subtrees). Actions are then selected using various methods [5].

Reinforcement learning aims to optimize the policy πθ over

episodes, i.e., to identify the policy parameters θ that optimizes

the expected reward Jπ (θ ). However, the reward Jπ (θ ) is typically
not feasible to precisely compute, and hence policy gradient meth-

ods search for the optimal policy parameters by constructing an

estimator E of the gradient of the reward: E(θ ) ≈ ∇θ Jπ (θ ).
Given an estimate E, gradient ascent methods tune the initial pa-

rameters θ by increasing each parameter in θi by a small value when

the gradient ∇θi Jπ (θ ) is positive (the positive gradient indicates
that a larger value of θi will increase the reward), and decreasing

the parameters in θi by a small value when the gradient is negative.

Policy gradient deep learning Policy gradient deep learning

methods (e.g., [17]) represent the policy πθ as a neural network,

where θ is the network weights, thus enabling the efficient differ-

entiation of πθ [16]. Figure 2 shows the policy network we used in

ReJOIN. A vectorized representation of the current state is fed into

the state layer, where each value is transformed and sent to the first

hidden layer. The first hidden layer transforms and passes its data to

the second hidden layer, which passes data to the final action layer.
Each neuron in the action layer represents one potential action, and

their outputs are normalized to form a probability distribution. The

policy πθ (si ,Ai ) selects actions by sampling from this probability

distribution, which balances exploration and exploitation [22].

The policy gradient ∇θ Jπ (θ ) is estimated using samples of pre-

vious episodes (queries). Each time an episode is completed (a

join ordering for a given query is selected), the ReJOIN agent

records a new observation (θ, r ). Here, θ represents the policy pa-

rameters used for that episode and the final cost (reward) r re-

ceived. Given a set of experiences over multiple episodes X =
{(θ0, r0), (θ1, r1), . . . , (θ2, r2)}, various advanced techniques can be

used to estimate the gradient E(θ ) of the expected reward [17, 21].

3 PRELIMINARY RESULTS
Here, we present preliminary experiments that indicate that ReJOIN

can generate join ordering with cost and latency as good (and often

better) as the ones generated from the PostgreSQL [1] optimizer.

Our experiments utilize the Join Order Benchmark (JOB), a set of

queries used in previous assessments of query optimizers [11]. The

benchmark includes 113 query instances of 33 query templates over
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Figure 4: ReJOIN Convergence

the IMDB dataset. We have created a virtual machine pre-loaded

with the dataset [2]. Each query joins between 4 and 17 relations.

The two largest relations contain 36M and 15M rows. ReJOIN is

trained on 103 queries and tested on 10 queries. Our testing query

set includes all instances of one randomly selected query template

(template #1), in addition to six other randomly selected queries.

The total database size was 11GB (all primary and foreign keys

are indexed) using PostgreSQL [1] on a virtual machine with 2

cores, 4GB of RAM and a maximum shared buffer pool size of 1GB.

We configured PostgreSQL to execute the join ordering generated

by ReJOIN instead of using its own join enumerator.

ReJOIN uses the Proximal Policy Optimization (PPO) algorithm [17],

an off-the-shelf [15] state-of-the-art DRL technique. We used two

hidden layers with 128 rectified linear units (ReLUs) [8] each.

Learning Convergence To evaluate ReJOIN’s learning conver-

gence, we ran the ReJOIN algorithm repeatedly, selecting a random

query from the training set at the start of each episode. The results

are shown in Figure 4. The x-axis shows the number of queries

(episodes) the ReJOIN agent has learned from so far, and the y-axis

shows the cost of the generated plan relative to the plan gener-

ated by the PostgreSQL optimizer, e.g. a value of 200% represents a

plan with double the cost of the plan selected by the PostgreSQL

optimizer. ReJOIN starts with no information, and thus initially

perform very poorly. As the number of observed episodes (queries)

increases, the performance of the algorithm improves. At around

8,000 observed queries, ReJOIN begins to find plans with lower

predicted cost than the PostgreSQL optimizer. After 10,000 queries,

the average cost of a plan generated by ReJOIN is 80% of the cost

of a plan generated by PostgreSQL. This demonstrates that, with
enough training, ReJOIN can learn to produce effective join orderings.
Join Enumeration Effectiveness To evaluate the effectiveness

of the join orderings produced by ReJOIN, we first trained our sys-

tem over 10,000 queries randomly selected from our 103 training

queries (the process took about 3 hours). Then, we used the gener-

ated model to produce a join ordering for our 10 test queries. For

each test query, we used the converged model to generate a join

ordering, but we did not update the model (i.e., the model did not

get to add any information about the test queries to its experience

set). We recorded the cost (according to the PostgreSQL cost model)

of the plans resulting from these test join orderings as well as their

execution times. We compare the effectiveness of ReJOIN with Post-

greSQL as well as Quickpick [20], which heuristically samples 100

semi-random join orderings and selects the join ordering which,

when given to the DBMS cost model, results in the lowest-cost plan.
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Figure 5: Effectiveness and efficiency results

Optimizer costs We first evaluated the join orderings produced

by the ReJOIN enumerator based on the cost model’s assessment.

The costs of the plans generated by PostgreSQL’s default enumer-

ation process, Quickpick, and ReJOIN on the 10 test queries are

shown in Figure 5a. “Query XY” on the x-axis refers to the instance

Y of the template X. On average, ReJOIN produced join orderings that
resulted in query plans that were 20% cheaper than the PostgreSQL
optimizer. In the worst case, ReJOIN produced a cost only 2% higher

than the PostgreSQL optimizer (15a). This shows that ReJOIN was
able to learn a generalizable strategy which outperforms or matches
the cost of the join ordering produced by the PostgreSQL optimizer.
The relatively poorer performance of Quickpick demonstrates that

ReJOIN’s good performance is not due to random chance.

Query latency Figure 5b shows the latency of the executed query

plans created by Quickpick and ReJOIN relative to the performance

of the plan created by PostgreSQL (ten executions, cold cache).

The minimum, maximum, and median latency improvement are

shown. The plans produced by ReJOIN’s join ordering outperform or
match the plan produced by PostgreSQL. Hence, ReJOIN can produce

plans with a lower execution time (not just a lower optimizer cost).

The relatively poorer performance of Quickpick demonstrates that

ReJOIN is not simply guessing a random join ordering.

Join EnumerationEfficiency A commonly-voiced opinion about

neural networks – and machine learning in general – is that they

require operations that are too expensive to include in database

internals. Here, we demonstrate that approaches like ReJOIN can

actually decrease query planning time. Figure 5c shows the aver-

age total query optimization time all 113 queries, grouped by the

number of relations to be joined. We include the planning time for

ReJOIN with and without policy updates.

Planning latency For PostgreSQL, as expected, more relations

in the query resulted in higher optimization time, as more join

orderings need to be considered and ran through the cost model.

However, ReJOIN can apply its model in time linear to the number

of relations: at each round, two subtrees are joined until a complete

join ordering is produced. As a result, while PostgreSQL’s query op-
timization time increases worse-than-linearly, the query optimization
time for ReJOIN is (relatively) flat.

Policy update overhead The additional overhead of performing

policy updates per-episode using PPO is relatively small, e.g. <

12ms . However, once the ReJOIN model is sufficiently converged,

policy updates can be skipped to reduce query planning times by an
additional 10% to 30%, achieving even shorter query planning times.

4 OPEN CHALLENGES & ONGOINGWORK
Our simple reinforcement learning approach to join enumeration

indicates that there is room for advancement in the space of apply-

ing deep reinforcement learning algorithms to query optimization

problems. Overall, we believe the ReJOIN opens up exciting new

research paths, some of which we highlight next.

Latency optimization Cost models depend on cardinality esti-

mates, which are often error-prone. It would be desirable to use the

actual latency of an execution plan, as opposed to a cost model’s

estimation, as a reward signal. ReJOIN uses the cost model as a

proxy for query performance because it enables us to quickly train

the algorithm for a large number of episodes – executing query

plans, especially the poor plans generated in early episodes, would

be overly time-consuming. We are currently investigating tech-

niques [9] to “bootstrap” the learning process by first observing

an expert system (e.g., the Postgres query optimizer), mimicking it,

and then improving on the mimicked strategy.

End-to-end optimization ReJOIN only handles join order selec-

tion, and requires an optimizer to select operators, choose indexes,

coalesce predicates, etc. One could begin expanding ReJOIN to

handle these concerns by modifying the action space to include

operator-level decisions.
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