
Workload Management for Cloud Databases via
Machine Learning

Ryan Marcus
Brandeis University

Email: ryan@cs.brandeis.edu

Olga Papaemmanouil
Brandeis University

Email: olga@cs.brandeis.edu

Abstract—As elastic IaaS clouds continue to become more
cost efficient than on-site datacenters, a wide range of data
management applications are migrating to pay-as-you-go cloud
computing resources. These diverse applications come with an
equally diverse set of performance goals, resource demands, and
budget constraints. While existing research has tackled individual
tasks such as query placement, scheduling, and resource pro-
visioning to meet these goals and constraints, these techniques
fail to provide end-to-end customizable workload management
solutions, leading application developers to hand-craft custom
heuristics that fit their workload specifications and performance
goals. In this vision paper, we argue that workload management
challenges can be addressed by leveraging machine learning
algorithms. These algorithms can be trained on application-
specific properties and performance metrics to automatically learn
how to provision resources as well as distribute and schedule the
execution of incoming query workloads. Towards this goal, we
sketch our vision of WiSeDB, a learning-based service that relies
on supervised and reinforcement learning to generate workload
management strategies for both static and dynamic workloads.

I. INTRODUCTION

Cloud computing has transformed the way data-centric
applications are deployed by reducing data processing services
to commodities that are paid for on-demand. As the diversity
of cloud-based database applications increases, the diversity of
the performance goals and workload characteristics needing
to be served increases equally. At the same time, all these
applications need to address common workload management
challenges when deployed on cloud infrastructures. These
include handling, in a cost-effective way, tasks such as resource
provisioning (renting/releasing new VMs), query placement
(routing the queries to a VM), and query scheduling (pro-
cessing order within a VM) while meeting the application’s
performance goals and constraints.

Current efforts have tackled these challenges individually
and on a per-application basis (e.g. [1]–[4]). However, they
all suffer from two main limitations. First, while a broad
range of performance criteria are covered by these systems
(e.g., response time [1], [2], average workload latency [3]),
each offers a solution tuned for specific performance metrics.
Adapting them to support custom performance goals is not a
straightforward task, and using the same query scheduling or
VM provisioning strategy for two applications with different
performance properties could result in significant monetary
losses or degraded system performance. Second, existing sys-
tems do not provide an end-to-end workload management
solution but instead focus on individual aspects of the prob-
lem, such as query placement [3], scheduling [1], [2], or

resource provisioning [4]. Since these solutions are developed
independently of each other, their integration into a unified
framework requires substantial effort to “get it right” for each
specific case. Hence, application developers often rely on ad-
hoc custom heuristics to handle all the above tasks, aiming to
satisfy their performance goals and budget constraints.

In this paper, we share our vision for a learning based
approach to addressing the above mentioned challenges. We ar-
gue that existing machine learning techniques can be leveraged
to eliminate such ad-hoc heuristics, and replace them with sys-
tems capable of learning workload management strategies for
a given application and performance goal. Towards this goal
we discuss our vision of WiSeDB, a learning-based workload
advisor service designed to generate workload management
strategies for cloud-based data management applications. We
have identified three main design goals for such a service. First,
we envision a metric-independent service, that allows applica-
tions to define custom application-level performance goals, and
learns the “best” heuristic for executing a given workload while
striving to meet specified performance expectations. Second,
given an incoming workload and a performance goal, the
service should provide end-to-end solutions for processing the
workload on a cloud infrastructure, i.e., indicate: (a) the cloud
resources to be provisioned (e.g., number/type of VMs), (b)
the distribution of resources among the queries (e.g., which
VM will execute a given query) and (c) the execution order of
these queries within each VM. Finally, our service should be
cost-aware, i.e., offer solutions optimized for monetary cost.

To satisfy the above requirements, WiSeDB will leverage
machine learning algorithms to identify low-cost heuristics for
executing incoming workloads. Here, we discuss two different
learning approaches we have studied towards realizing our
vision of WiSeDB. Specifically, in Section II, we demonstrate
how supervised learning (particularly decision tree classifiers)
can be used to identify low-cost solutions for workloads with
known (or predictable) performance properties. In Section III,
we discuss a reinforcement learning approach for actively
learning and updating workload management strategies for
dynamic, changing workloads. We conclude in Section IV with
a discussion of the research problems we plan to pursue further.

II. OFFLINE LEARNING OF STATIC STRATEGIES

In this section we describe a proof-of-concept supervised
learning framework, SLEARN, that we have implemented for
WiSeDB. SLEARN utilizes decision tree classifiers to auto-
matically “learn” effective strategies for executing incoming
workloads. SLEARN’s strategies are expressed as decision tree

Performance	
Goal	 Sample

Workload
Generation

Feature	
Extraction

Model	
LearningQuery	Templates

T={T1,T2,…}

A*	Search

Optimal	Schedules

Feature	Generation	
(per	sample	workload)

Training	Data
Collection

Workload		
Management	Model

Model	Generation

Graph	
Construction

Fig. 1. The SLEARN training process

A

unassigned:	{!", !#, !#}
VM1:	[]

B

unassigned:	{!#,	!#}
VM1:	[!"]

C

unassigned:	{!", !#}
VM1:	[!#]

D

unassigned:{!#,	!#}
VM1:	[!"]
VM2:	[] E

unassigned:	{!#}
VM1:	[!",!#]

G
unassigned:	{}
VM1:	[!",!#,	!#]F

unassigned:	{!#}
VM1:	[!", !#]
VM2:	[]

… …

… …

Fig. 2. A workload scheduling graph example

models tuned for application-defined performance goals and
workload specifications. Decision models are trained offline,
and they are used at runtime to generate low-cost execution
strategies for any query set that matches the model’s workload
specifications. Specifically, for a given incoming query set,
WiSeDB parses the model to identify (a) the number/type of
VMs to provision, (b) the placement of queries to these VMs
and (c) the query execution order within each VM. Each model
is cost-aware: it is trained on a set of performance and cost
related features that account for provisioning costs and any
penalties paid due to violations of the performance goals.

Workload & Performance Goal Specification Our learn-
ing framework allows users to specify a set of representative
query templates T1, T2, . . . , each corresponding to groups
of queries of the same type and hence similar execution
times when processed on the same execution environment
(e.g., resource configurations, concurrent queries, etc). Incom-
ing workloads can include any combination of queries of
these templates. Latency estimates per template must also be
provided by either the application itself (e.g., by executing
representative queries a-priori on various VM types), or by
using existing prediction models [7].

In addition to query templates, applications need to specify
a performance goal as a function of query latency. Our current
implementation of SLEARN can learn effective strategies for
the following performance metrics: (1) Query Latency: users
specify an upper bound for the latency of each query template.
(2) Max: the users express an upper bound on the worst query
response time in their workload. (3) Average: an upper limit on
the average query latency of a workload. (4) Percent: specifies
that at least x% of the workload’s query must be completed
within t seconds. These metrics cover a range of performance
goals typically used for cloud databases (e.g., [2]–[4]), but, to
the best of our knowledge, our framework is the first one to
support all of them. Performance goals are expressed as part of
a Service-Level-Agreement (SLA) between the IaaS provider
and the application. The agreement states the workload speci-
fication (i.e., query template), the expected performance goal,
and a penalty function that defines the penalty to be paid to
the application if that goal is not met.

Supervised Learning Our supervised-learning framework
is actualized through a three-step process shown in Figure 1.
First, we create a small number of sample workloads by
drawing queries at random from the specified query template.
Second, for each random workload we identify the optimal
workload execution strategy and extract performance and cost
related features from these optimal solutions. We then train
a decision tree classifier on the training set that consists of
all the features and optimal strategies we collected for all the
random workloads. The generated decision model represents
a workload management heuristic tailored to the application’s
query templates and performance goals.

The above process raises two main challenges: (a) gen-
erating the optimal execution strategy for a given random
workload and (b) identifying the set of features that can
effectively characterize these optimal decisions (e.g., assign
a query on an existing VM, provision a new VM, etc). To
address these, SLEARN represents the problem of scheduling
a given workload as a graph navigation problem. It constructs a
directed, weighted graph where vertices represent steps of the
workload scheduling process. Specifically, each vertex stores
the scheduling decision for already-scheduled queries as well
as the still-unassigned queries. The scheduling decision defines
a set of VM to be provisioned for the workload and the query
queue in each VM.

Figure 2 shows part of an example graph for a query set
{q1, q2, q2}, where qi represent a query of template Ti. For a
given random workload, the first vertex on the graph has all the
queries unassigned (i.e., node A). Edges represent a decision
to (a) assign a query to one of the provisioned VMs (e.g.,
edge from A to B) or (b) start a new VM (e.g., from B to D).
The weight of each edge is equal to the cost of performing the
corresponding action. The graph allows us to generate and cost
all possible decisions for a given workload. Finding the optimal
strategy (i.e., the least-cost strategy) is reduced to finding the
shortest path through the graph. SLEARN searches the graph
using the A* algorithm [5], taking advantage of a few search
heuristics we have developed to improve its efficiency.

For each decision within the optimal solution (i.e., for
each edge in the optimal path), we extract a feature set to
characterize the decision. We select features that appear in
human-derived heuristics [2], [3], hoping that a machine-
learning algorithm will be able to construct a customized
heuristic for arbitrary task templates and performance goals
from them. The most important features extracted were:

1) wait-time: the amount of time that a query would have
to wait before execution. This helps our model decide
which tasks should be placed based on their deadline.

2) cost-of-X: the cost incurred (including any penalty
costs) by placing a query of template X on the most
recently created VM. This allows our model to check
the cost of placing a certain query and decide whether
to assign it or to create a new VM.

3) have-X: if a query of template X is still unassigned.
This helps our model understand how the template of
unassigned queries affects decisions on the optimal path.

We concatenate all the collected features into a set and train
a decision tree model on it. The model takes the above features
as input and predicts an edge (i.e., a decision to provision a
new VM or assign a query to a VM). This model can then be
used to schedule new workloads of the given query template.

>=	2 <	2

(3)	have-T2

(1)	wait-time

(2)	new	VM

Y

(4)	cost-T2

N

(5)	assign	T1

<	100

(6)	assign	T2

>=	100

(7)	have-T1

Y

(8)	assign	T1

N

(9)	new	VM

unassigned	 : {!",!#}
VM1:	[!#]
unassigned:	 {!#}
VM1:	[!#, !"]
unassigned:	 {!#}
VM1:	[!#, !"],	VM2:	[]

VM1:	[!#, !"],	VM2:	[!#]

Initial
unassigned: {!",!#,!#}
VM1:	[]

Step	1

Step	2	

Step	3

Step	4	

Fig. 3. An example decision tree generated by SLEARN

Figure 3 shows an example decision tree. Each orange
node represents a binary split on a feature. The decision nodes
(white) represent suggested actions. The right side of Figure 3
shows an incoming workload {q1, q2, q2}. To schedule this
workload, we parse the decision tree as follows. In the first
node (1), we check the wait time, which is zero since all
queries are unassigned, so we proceed to (3). The workload
has unassigned queries of template T2, so we proceed to (4).
Here, we calculate the cost of placing an instance of T2 on
a VM (we assume for simplicity a single VM type). Let us
assume the cost is less than 100, which leads to (6), which
assigns an instance of T2 to the initial VM (Step 1). Since we
have more queries in the workload, we re-parse the tree. In (1)
let us assume the wait time on the most recent VM is 1 minute
(this is the runtime of queries in T2) so we move to (3). Since
we have one more query of T2 unassigned, we move to (4). Let
us assume the cost of assigning a query of T2 is more than 100
(because it would need to wait for q2 to complete). We move
to (7) and we check if there are unassigned instances of T1.
Since there is, we assign q1 to the last provisioned VM (Step
2). We re-parse the tree in the same way and by following
nodes (1)→(2), then again as (1)→(3)→(4)→(7)→(9), so we
provision a new VM (Step 3) and assign q2 onto it (Step 4).

In general, the decision model will place an instance of T2,
then an instance of T1, then create a new VM. This repeats
until tasks of T1 or T2 are depleted. Then, single instances
of the remaining templates are placed on new VMs until
none remain. For the case of these two query templates, the
heuristic learned by SLEARN is equivalent to sorting queries
in increasing order of latency and placing each query on the
first VM where the query “fits” (i.e., incurs no penalty).

Results Figure 4 shows the cost of scheduling workloads
of 30 queries uniformly distributed across 10 query templates
for four performance metrics. Max requires that the maximum
query latency be less than 10 minutes, 2.5 times the latency
of the longest query in our workload. PerQuery requires
that the final latency of each query is not more that 2.5
times their individual latencies. Average requires that the
average query latency is less than 4 minutes, and Percent
requires that 90% of the queries finish with 10 minutes. The
experiment was conducted on the Amazon EC2 instances
using the TPC-H benchmark, where query templates 1-10
were used as query templates. Here, we compare schedules
generated by WiSeDB with the optimal, brute-forced schedules
for this specific setting. WiSeDB’s schedules are within 8% of
the minimum cost schedule for all the performance metrics.
These results were consistent independently of the size of
the runtime workloads and the strictness of the performance
metrics. SLEARN also learns models very quickly, requiring at
most one minute to train for workloads of 15 query templates.

 0

 10

 20

 30

 40

 50

 60

PerQuery Average Max Percent

C
o
s
t
(c

e
n
ts

)

Performance Goal

WiSeDB
Optimal

Fig. 4. Performance of SLEARN models compared to optimal schedules

III. ADAPTIVE LEARNING OF DYNAMIC STRATEGIES

Our supervised learning technique relied on two assump-
tions. First, incoming workloads will consist of already known
query templates, and second, that the execution times of these
query templates can be predicted. However, a plethora of
data centric applications need to support dynamic workloads
involving previously unseen queries in which users explore
data, search for irregularities, etc., and for which performance
prediction is a major challenge. In a dynamic setting, the per-
formance of a fixed strategy generated by SLEARN will decay,
possibly very quickly. To address this limitation, we sketch the
foundation for RLEARN, a reinforcement learning approach
that can be used to adaptively learn workload management
strategies for dynamically changing workloads.

Reinforcement Learning Reinforcement learning differs
from standard supervised learning in that optimal/correct de-
cisions are not required a priori. The system decides on an
action in order to maximize a cumulative reward. It learns
from its past (possibly sub-optimal) decisions, and its decisions
improve over time. Here, there is a focus on online learning,
which involves finding a balance between exploration (reward
maximization based on the knowledge already acquired) and
exploitation (attempting new actions to further increase knowl-
edge). In machine learning, this trade-off has been studied in
the contextual multi-armed bandit (CMAB) problem [6].

The CMAB is a problem where a gambler plays on a row of
slot machines (one-armed bandits) and needs to decide which
machines to play (i.e., which arms to pull) in order to maximize
the sum of rewards earned. In each round, the player decides
which machine to play (action a) and receives a reward r. The
decision is made by observing a feature vector X (aka context)
which summarizes information on the state of the machine at
this iteration. The gambler then improves their strategy through
the new observation {a,X, r}. The gambler’s goal is to achieve
the highest cumulative reward. Hence, the gambler aims to
collect information about how the feature vectors and rewards
relate to each other so that they can predict the next best
machine to play by looking at the feature vector.

Our workload management problem can be modeled as a
tiered network of CMABs, illustrated in Figure 5. Each VM
corresponds to a slot machine in one of several tiers, where
each tier represents a different type of VM. Tiers can be
ordered based on price or performance/resource criteria. Each
machine has three arms/actions: Accept, Pass, and Down.
When a query enters the system, it is first given to the root
machine (top left). The algorithm makes a decision based on
a set of features that capture information about the new query

VM VM

VM VM

Tier 1

Tier 2

Decision
(action	&	reward)

Context	
(Feature	vector	X)

observation

Learning	process
(executed	by	each	VM	
when	passed	a	query)

VM Tier 3VM VM

(1)	Pass (2)	Down

(3)	Pass (4)	Accept

Fig. 5. The RLEARN learning process and an example decision process

and the current state of the underlying VM. If the Accept
action is selected, the query is added to the VM’s execution
queue. If the Pass action is selected, the query is passed to
another VM in the same tier. If there is no other VM, a new
VM of that tier is provisioned. If the Down action is selected,
the query is passed downwards to the first VM in the next tier.
The last tier contains no Down arms. The network contains no
cycles, so a query will eventually be accepted by some VM.

The rewards for each decision are determined after the
query executes. Assuming that a query earned the service
provider x dollars and that processing the query required y
dollars, the accumulated reward is the profit x− y. Since each
CMAB strives to maximize its own reward, it is not necessary
to “divide up” the profit between the CMABs – each CMAB
can assume it independently realized the entire profit. This
technique can be thought of as backpropagating the rewards
from the accepting VM to the CMABs involved in passing
the query to that VM. Each CMAB adds a new entry to their
reward observations, and as more queries move through the
system, each CMAB’s set of observations grows larger, and the
system as a whole will learn a workload management strategy.
Finally, the contextual information, X , would vary greatly
between applications. For a database application, the feature
vector could contain performance indicators (e.g., number of
logical I/Os required by the query [7]), the queries in the queue
of the VM, the tables accessed by them, etc.

To illustrate this process, let us assume a CMAB network
is paid $4 to process a query. Since the network has no prior
experiences, it erroneously provisions ten new VMs (each new
CMAB selects the Pass action) and assigns the query to the
last VM (the 10th CMAB selects the Accept arm). Assuming
that a VM costs $1 to provision and that processing the query
costs $1, deciding to Pass the query when the machine’s
context indicates that it is empty will be associated a reward
of $4 − $11 = −$7. Now, each CMAB in the network will
be biased against pulling the right arm when they have not
accepted any queries yet. When a new query arrives, it is likely
that the first CMAB will accept it (earning it a profit of $3), or
pass it downwards. In the first case, the CMAB will associate a
positive reward with selecting the Accept action when empty.
As more queries flow through the network, each CMAB will
gain more experience and thus make more informed decisions.

One algorithm for effectively solving the CMAB problem
is Thompson sampling [6], which chooses the action that
maximizes the expected reward with respect to a randomly
drawn belief. The sampling can be implemented by Bayesian
approach as follows. The set of past observations D is made
of triplets (ai, Xi, ri) and are modeled using a parametric
likelihood function P (r|a, x, θ) depending on some parameters

θ. For a generic application, θ could be a set of coefficients for
a linear model of each arm relating each feature in Xi to a re-
ward. Given some prior distribution P (θ) on these parameters,
the posterior distribution of these parameters is given by the
Bayes rule, P (θ|D) = P (D|θ)P (θ). In practice, the approach
is implemented by sampling, in each round, a parameter θ
from the posterior P (θ|D), and choosing the action a that
maximizes the expected reward given the parameter θ, the
action, and the current context. Conceptually, this means that
the player instantiates their beliefs randomly in each round,
and then acts optimally according to them.

IV. OPEN CHALLENGES AND ONGOING WORK

Our two learning-based approaches indicate that there is
room for advancement in the space of applying machine
learning algorithms to the workload management problem for
cloud databases. Overall, we believe that WiSeDB opens up
exciting research paths, some of which we highlight next.

Adaptive Modeling It is often desirable to allow applica-
tions to explore potential performance and cost trade-offs for
their workloads. This implies generating different models for
the same workload with stricter/looser performance constraints
and thus higher/lower costs. However, SLEARN tunes its
decision model for a specific performance goal and changes in
this goal will trigger WiSeDB to re-train the decision model.
We are working on a technique that adapts an existing model
trained for a given workload and performance goal to generate
with minimal training a new model for the same workload but
stricter goals. The main idea is that if two decision models are
trained for the same query templates and similar performance
goals, their training sets will share significant information. Our
technique aims to identify and reuse these commonalities.

Online Scheduling The training overhead for RLEARN
is paid every time a task enters the system. Furthermore, with
RLEARN, scheduling within a VM is handled by using a basic
FIFO queue in our example. In order to allow RLEARN to
learn more advanced query scheduling strategies, the single
choice of Accept could be replaced with a continuum-armed
bandit [8], which selects a number between zero and one as a
priority instead of simply pulling an arm (boolean).

ACKNOWLEDGMENT

This research was funded by NSF IIS 1253196.

REFERENCES

[1] Chi et al. SLA-tree: a framework for efficiently supporting SLA-based
decisions in cloud computing. EDBT ’11.

[2] Chi et al. iCBS: incremental cost-based scheduling under piecewise
linear SLAs. VLDB ’11.

[3] Liu et al. PMAX: tenant placement in multitenant databases for profit
maximization. EDBT ’13.

[4] Jalaparti et al. Bridging the Tenant-Provider Gap in Cloud Services.
SOCC ’12.

[5] Hart et al. A Formal Basis for the Heuristic Determination of Minimum
Cost Paths. IEEE SSC ’68.

[6] Chapelle et al. An empr. evaluation of Thompson sampling. NIPS ’11.
[7] Duggan et al. Performance Prediction for Concurrent Database Work-

loads. SIGMOD 2011.
[8] Auer et al. Improved rates for the stochastic continuum-armed bandit

problem. Learning Theory ’07.

