
SteeringQuery Optimizers: A Practical Take on Big Data
Workloads

Parimarjan Negi
1
, Matteo Interlandi

2
, Ryan Marcus

1,3
, Mohammad Alizadeh

1
, Tim Kraska

1

Marc Friedman
2
, Alekh Jindal

2

1
MIT,

2
Microsoft,

3
Intel Labs

USA

ABSTRACT
In recent years, there has been tremendous interest in research

that applies machine learning to database systems. Being one of

the most complex components of a DBMS, query optimizers could

benefit from adaptive policies that are learned systematically from

the data and the query workload. Recent research has brought

up novel ideas towards a learned query optimizer, however these

ideas have not been evaluated on a commercial query processor

or on large scale, real-world workloads. In this paper, we take the

approach used by Marcus et al. in Bao and adapt it to SCOPE, a

big data system used internally at Microsoft. Along the way, we

solve multiple new challenges: we define how optimizer rules affect

final query plans by introducing the concept of a rule signature,

we devise a pipeline computing interesting rule configurations for

recurring jobs, and we define a new learning problem allowing us to

apply such interesting rule configurations to previously unseen jobs.

We evaluate the efficacy of the approach on production workloads

that include 150𝐾 daily jobs. Our results show that alternative rule

configurations can generate plans with lower costs, and this can

translate to runtime latency savings of 7 − 30% on average and up

to 90% for a non trivial subset of the workload.

ACM Reference Format:
ParimarjanNegi

1
, Matteo Interlandi

2
, RyanMarcus

1,3
, MohammadAlizadeh

1
,

Tim Kraska
1
and Marc Friedman

2
, Alekh Jindal

2
. 2021. Steering Query Op-

timizers: A Practical Take on Big Data Workloads. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD ’21), June
20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3448016.3457568

1 INTRODUCTION
Cascades-style query optimizers [7] are popular in both commercial

and open source database systems, e.g., Spark [31], Calcite [2],

Greenplum [25], Snowflake [4], F1 [23], SQL Server [17], and SCOPE

[3]. At its core, they have a set of rules that are used to enumerate

all valid query plans. Each plan is assigned a cost, using a cost

model and estimated cardinalities for the intermediate results in the

plan. The lowest cost plan is chosen by the optimizer for execution.

There are multiple classes of errors an optimizer can make, such as

cardinality mis-estimates, inaccuracies in the cost model [13], and

Work done while Parimarjan Negi was at Microsoft.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8343-1/21/06.

https://doi.org/10.1145/3448016.3457568

Workloads

A B C Total

Jobs 95K 15K 40K 150K

Unique Templates 48K 10.5K 22K 80.5K

Unique Inputs 29K 9K 18.5K 56.5K

Unique rule signature 13K 837 2.5K 16.337K

Table 1: Production workloads used through the paper.

other poor heuristics. These mistakes can have a large adversarial

influence on the low level decisions made by the optimizer, such

as the choice of operator implementation and the join orders. For

instance, severe cardinality underestimates can lead an optimizer

to pick a disastrous plan involving nested loop joins [14].

In recent years, several works have tried to solve such problems

using machine learning: e.g., learned cardinalities [11], learned cost

models [24], and even learned query planners [12, 14, 15]. The

Bao [14] approach, in particular, handles the numerous optimizer

pitfalls by limiting the search space of the query optimizer based on

a given query. This is achieved by disabling a subset of the optimizer

rules
1
that control how query plans are transformed, e.g., which

operators, or algorithms, are used by the optimizer. Bao can learn,

for example, that certain kinds of queries systematically have large

underestimates, and decide to turn off nested loop joins for other

similar queries. As a result, we can build sophisticated machine

learning models to deeply influence the query planswithoutmaking

deep changes in the query optimizer.

This paper fills the gap between recent research advances in

steering a query optimizer, and the practical realities of industry

strength query optimizers. Specifically, we consider the SCOPE [3]

query engine used for petabyte-scale big data processing at Mi-

crosoft, analyze the current state of the SCOPE query optimizer,

and apply the ideas in Bao to production workloads in SCOPE.

While doing this, we solve multiple new challenges. We introduce

the notion of a rule signature for a query, i.e., the set of rules that im-

pact the final query plan output by the optimizer. The rule signature

has been central to all of our heuristics for discovering interesting

rule configurations. Even more importantly, it proves to be an ex-

cellent signal to cluster very different queries into groups where

similar rule configurations lead to improvements. Intuitively, the

rule signature compactly captures the code path that the query

takes inside an optimizer. Furthermore, we devise a pipeline that

can automatically extract interesting configurations from historical

jobs, which can then be used online to improve future recurring jobs.

Finally, we establish a learning problem, and provide some initial

results on how machine learning can be used to improve previously

unseen jobs by utilizing the results of our offline pipeline.

1
Several query optimizers have their rules exposed as knobs for expert users.

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3457568

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2557

https://doi.org/10.1145/3448016.3457568
https://doi.org/10.1145/3448016.3457568
https://creativecommons.org/licenses/by/4.0/

Job
−100

−75

−50

−25

0

R
u
n
ti
m

e
 (

%
 C

h
a
n
g
e
)

Figure 1: Percentage runtime change (lower is better), from the
default rule configuration, for 65 productions jobs in Workload A.

We evaluate the efficacy of our approach on three workloads

sampled from production clusters over a window of few weeks. For

any single day, these include 150𝐾 SCOPE jobs (Table 1), compris-

ing of 20𝐾 hours of total processing time, and spanning over 500

million containers. These jobs are also far more complex than the

workloads used when evaluating Bao or several other learned query

optimization approaches [11, 14, 15, 18], with up to hundreds of op-

erators per SCOPE job. Furthermore, there is a massive search space

of billions of valid rule configurations in contrast to 48 PostgreSQL

configurations considered in Bao.

We find robust evidence, across the different workloads, that

steering the search space of the SCOPE optimizer by choosing

different rule configurations can lead to significant improvements

in terms of execution times. Moreover, we can reliably identify

templates for recurrent jobs running across many days, where

certain rule configurations can lead to consistent improvements.

To illustrate this, Figure 1 shows 65 jobs over a span of one week

in Workload A, where the same rule configuration improves each

query’s execution time by hours, ranging from 50% to 90% faster

runtimes. Overall, our analysis on the three production workloads

suggests that there is a potential for 10−30% runtime improvements,

on average, in almost 10 − 20% of the jobs that run for more than 5

minutes, which is the critical, resource intensive component of the

workload.

Contributions. Summarizing, our key contributions are:

(1) rule signature. We analyze the usage of rules in SCOPE

query optimizer, and introduce the idea of a rule signature for

SCOPE jobs. rule signature is promising both to featurize and

to cluster jobs, as it compactly captures useful information

about the code path inside the optimizer.

(2) Discovering interesting rule configurations.We create

a heuristics driven pipeline that uses recompilation and se-

lective re-execution of query plans to discover interesting

rule configurations. We provide robust evidence, and in-

tuition, for why different rule configurations can improve

performance in SCOPE. These techniques do not rely on our

existing knowledge about these rules, and could potentially

be scaled up to hundreds of more rules, or other configu-

ration flags and settings. Moreover, we identify recurring

queries across multiple weeks in which these new rule con-

figurations can provide runtime improvements.

(3) Learning. In the more challenging cases, the same rule con-

figurations can also cause regressions for unseen queries. We

therefore formulate selecting rule configurations at compile

time as a learning problem, and present results in which we

use a learned model to choose rule configurations for new

queries. These results use only a small subset of the total

workload, but our results shows that it can scale over full

production workloads.

Organization. The remainder of the paper is organized as follows:

In Section 2, we describe related work, in particular the relevant

features of the Bao system our approach is based on. In Section 3 we

give background on SCOPE, in particular we describe its rule-based

optimization process. In Section 4, we describe the challenges in

adapting a Bao like system for SCOPE, and in Sections 5, 6, and 7

we describe our approach for solving these challenges. The papers

ends with conclusions and future work in Section 8.

2 RELATEDWORK

Learned query optimization. Many recent works use learned

models to improve cardinality estimation [5, 6, 11, 18, 19, 27, 29,

30], which is a core component of query optimization. Other ap-

proaches [12, 15, 16] focus on directly generating query plans by

learning from the output of the cost model or the runtimes. Our

approach is based on Bao [14], and uses existing optimizer infras-

tructure to better explore, and choose from the query plans already

being considered by the optimizer. Conceptually, this is similar to

past work exploring the space of query plans, such as Picasso [8],

or designing robust cost estimates for choosing query plans [26].

Bao.Marcus et al. [14] devised Bao as a system that leverages Post-

greSQL query hints to generate 48 hint sets (or rule configurations).

Each hint set essentially is like a simpler versions of the PostgreSQL

query optimizer. Each simple optimizer disables a subset of the Post-

greSQL flags. The hints affect the optimizer behaviour for choosing

scan operators, join operators, and join orders. They treat each

simple optimizer as an arm in a multi armed bandit problem. Given

a new query, the model learns to choose one of the 48 arms. It is

modeled as a reinforcement learning problem in which Bao sees a

sequence of queries, and over time learns to make the correct deci-

sions. Bao was evaluated on a custom dataset with queries ranging

from a few to several hundred seconds. Bao did not rely on the

PostgreSQL cost model. Instead, a core component of their system

is a tree convolutional neural network which learns a cost model

for tree structured PostgreSQL query plans by executing the plans.

SCOPE. The overall SCOPE design is described in Chaiken et al. [3].

Jindal et al. [9] give an overview of the Peregrine infrastructure

used to introduce workload optimizations in SCOPE. There have

been several efforts trying to introduce learned components in

SCOPE. Sen et al. [22] uses learned models to automatically choose

the number of concurrent containers a job should use. Wu et al. [28]

developed a novel way to do cardinality estimation tailored to the

SCOPE workloads. Siddiqui et al. [24] analyzed the new challenges

for cost models in a cloud-based execution framework, and pro-

posed a learning approach for SCOPE.

3 PRODUCTION QUERY PROCESSOR
In this section, we first describe the SCOPE query processor, and the

workloads seen by it in production. Then, we analyze the optimizer

rules in SCOPE, and finally we discuss our key requirements when

applying ML to navigate the space of SCOPE optimizer rules.

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2558

0 25000 50000 75000 100000
Runtime (Seconds)

10
1

10
3

10
5

N
u
m

b
e
r

o
f
jo

b
s

(a) Histogram of SCOPE job
runtimes.

Rule

10
1

10
3

10
5

N
u
m

b
e
r

o
f
jo

b
s

(b) Number of jobs using
each of the rules.

0 20 40 60
Number of rules used in a job

0

2000

4000

6000

8000

N
u
m

b
e
r

o
f
jo

b
s

(c) Histogram of number of
different rules used in a job.

Rule Signature

10
2

10
3

N
u
m

b
e
r

o
f
jo

b
s

(d) Number of jobs for 200
most common rule signatures.

Figure 2: Distributions of runtimes and queries during one day in Workload A.

Category #Rules #Unused
Rules

Rule Examples

Required 37 9

EnforceExchange, BuildOutput

GetToRange, SelectToFilter

Off-by-default 46 36

CorrelatedJoinOnUnion1,

GroupbyOnJoin

On-by-default 141 37

NormalizeReduce,

CollapseSelect, SelectPartitions,

SequenceProjectOnUnion

Implementation 32 4

HashJoinImpl1, JoinToApplyIn-

dex1, UnionToVirtualDataset

Table 2: Rule categories with some statistics and examples.

3.1 SCOPE Overview and Workloads
SCOPE is a large scale distributed data processing system. It powers

production workloads from a range of Microsoft products process-

ing petabytes of data every day [3]. SCOPE uses a SQL-like scripting

language that is compiled into Direct Acyclic Graphs (DAGs) of op-

erators. SCOPE scripts contain a mix of relational and user defined

operators (in C# and Python). Since SCOPE scripts contain a data

flow of multiple SQL statements, they are also referred to as jobs.
The SCOPE optimizer is structured very similarly to traditional

cascades-style query optimizers: it transforms a logical query plan

using multiple tasks in a top-down fashion. However, the SCOPE

optimizer also makes all the decisions about how to partition the

inputs, and selects the optimal amount of parallelism given the

number of containers available for the job. The number of concur-

rent containers used by each job is referred to as number of tokens
in SCOPE. The SCOPE optimizer estimates the cost of an operator

to capture its runtime latency using a combination of data charac-

teristics and other heuristics tuned over the years. For any query

plan (or subplan), the cost of an operator is recursively combined

with all of its children’s cost, and ultimately the optimizer picks the

plan with the cheapest total cost for execution.

3.1.1 SCOPEWorkload Characterization. A large portion of SCOPE

workloads consist of recurring jobs, i.e., periodically arriving tem-

plates with different inputs and predicates, that are part of the

workflows of internal customers. These are often used to cook large

volumes of raw data, run data mining or other analytical tasks,

and populate dashboards for interactive analysis. The input data

streams for these jobs can change daily. Recurring jobs belonging

to the same template can be identified by discarding all variable

values (e.g., predicate filters) and by computing the hash of the

remaining information in the query graph.

Short running jobs v/s long running jobs. In Figure 2a we show
the distribution of runtimes in Workload A for a single day. The

shortest jobs take just a few seconds, but there are several that run

for hours. Similar results also hold for the other workloads. Unsur-

prisingly, the shorter running jobs also consume fewer resources.

We find that only about 10% of the jobs last over five minutes, but

these consume 90% of the total containers used in the workload.

Furthermore, distributed processing often leads to variance in the

runtimes for the same query plans (unpredictability in resource

allocation, hot spots due to cluster conditions, or large chain of data

dependencies). Incidentally, short running jobs also have larger

variance: for instance on Workload B we observed a variance of

around 10%. Therefore, we focus on long running jobs in this work.

3.1.2 Metrics. Job runtime is the typical metric used to evaluate

performance. However, in SCOPE, the following other metrics are

equally important, particularly for monitoring the cost in terms of

resource usage. Typically, many parallel jobs are being executed on

the same set of resources, thus improving the utilization for any

resource can help improve performance of other jobs, and reduce

the load on the servers.

(1) Runtime. The total wall clock latency of executing the job

from start to finish. This does not include the time a job may

spend in a queue being scheduled.

(2) CPU time. This is the total CPU time across all vertices in

a SCOPE job and indicates the computation cost of the job,

and is useful to measure the CPU utilization in our clusters.

(3) Total I/O time. This includes data read, written, or copied
to different containers and indicates the time spent on I/O.

3.1.3 A/B testing Infrastructures. The SCOPE infrastructure also

provides A/B testing capabilities to evaluate the performance im-

pact of new features in the SCOPE engine, e.g., during a new SCOPE

release. This feature can also be used to execute jobs with differ-

ent configurations, and compare performance. The A/B testing

infrastructure can re-execute recent production jobs using pro-

duction datasets but with outputs redirected to a dummy loca-

tion [1, 10, 22, 28]. We use this A/B testing infrastructure for all the

experiments in this paper. For all the reported execution times (or

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2559

other metrics when applicable) we re-executed the original produc-

tion query plans and the alternate query plans (with different rule

configurations) on the production clusters, and with the same set

of available resources (50 tokens each for every job). In production,

each job executes with different resources, as specified by the cus-

tomer, but we typically find that improvements with a fixed set of

resources also translate to improvements when more resources are

used.

3.2 Analyzing SCOPE Optimizer Rules
We now analyze the query optimizer rules in SCOPE. There are

256 rules in the SCOPE optimizer that govern the algorithms and

operators used to optimize a SCOPE job. These cover a wide range

of standard optimizer rules: rewrite rules, rules for particular opera-

tors, join order and implementation rules and so on. It also involves

operators and algorithms for SCOPE specific operators, like union

all [3]. Figure 2b shows the distribution of how frequently each rule

is used in Workload A jobs, and Figure 2c shows the distribution

of how many different rules are used in a single job. Interestingly,

even though 100 − 150 rules are used frequently in the workload,

typically only 10 − 20 different rules are used in a single job. We

divide the kind of rules used in SCOPE into four informal categories.

(1) Required rules. These rules are necessary for correctness

in query processing, therefore we do not treat these as part

of the learnable rule configurations. Examples include En-

forceExchange or BuildOutput, which have no alternative

rules.

(2) Off-by-default rules. These are rules that are either experi-
mental, or unsafe due to extreme sensitivity to mis-estimates

in the cardinalities. An example would be a collection of

slightly different CorrelatedJoinOnUnion rules. These rules

chooses to push union all operators under the join op-

erator, i.e., choose to do unions on each distributed node,

and then combine them on a single node for the join, versus

joining on each distributed node, and applying the union op-

erator on the combined results. The performance of this rule

can be extremely sensitive to the sizes of the intermediate

results.

(3) On-by-default rules.These includemost optimization rules

and algorithms. Examples include various rewrite rules, join

order rules, aggregation and sorting rules.

(4) Implementation rules. These rules are about the physical
implementation of logical operators, such as join or union

all. For each operator type, one of the implementation rules

must be enabled. For simplicity, we treat these as a single

class of rules in this paper.

Table 2 summarizes some of the statistics about each category

in the 95𝐾 jobs from one day in Workload A. Interestingly dozens

of on-by-default rules are never used in this workload.

Definition 3.1. Rule configuration.We define a bit vector spec-

ifying whether each rule is enabled or disabled when optimizing a

given job as the rule configuration. The default rule configuration
in SCOPE has 46 rules which are disabled (off-by-default rules),

and the rest are enabled. Only the enabled rules can be used by the

optimizer. SCOPE exposes flags, or “hints” that allow end users to

specify which rules should be enabled or disabled when optimizing

a job, thus modifying the rule configurations can be easily done in

SCOPE.

There are rules, such as some rewrite rules, which are just not

applicable to a job (e.g., because the target operator is not part of the

query). In other cases, there are rules that were not used because

an alternative rule was used (e.g., join operator implementation

rules). To track this, we modified the SCOPE optimizer to log which

rule contributes to any component of the final query plan.

Definition 3.2. Rule signature.We define a bit vector specify-

ing which rules directly contribute to the final query plan produced

by the optimizer as the rule signature. We refer to them as on rules

if it is 1 in the bit vector, and off otherwise. For instance, consider

a scenario with 10 total rules. A given query will be optimized

using a particular rule configuration of the 10 rules, for instance,

1111111110 — which implies that the last rule is disabled, and the

rest are enabled. Not all the enabled rules will impact the optimiza-

tion process — for instance, some rules may just not apply for this

particular query. Suppose only the first and the second rule was

used during the optimization. Then, the rule signature of this query,

with the given rule configuration, will be 1100000000. We refer

to the rule signature of a query optimized using the default rule

configuration as the default rule signature.

Figure 2d shows the distribution of the default rule signature of

the jobs on one day in Workload A. Even though there are expo-

nentially many possible rule signatures, in practice we observe that

there is a lot of structure in the distribution of rule signatures. For

instance, there are several rule signatures with almost 1000 jobs

mapping to them every day.

3.3 Learning Requirements
Introducing any learning component in a complex and widely used

system such as SCOPE is challenging. Below we discuss some of

our requirements.

• Domain knowledge vs full control. An alternative ap-

proach to Bao, Neo [15] seeks to learn the complete opti-

mizer, or a full component of it, from scratch. It benefits from

having full control over the optimization decisions, but it

can’t use decades of carefully crafted and domain specific

optimizations used in commercial optimizers such as SCOPE.

Bao, and our adaptation in this paper, utilize all the existing

knowledge and implementation in the optimizers.

• Non-invasive. The SCOPE optimizer has an extremely ma-

ture and large code base. It is very challenging to make big

changes to the internals of the optimizer and include learn-

ing in specific subsystems while avoiding unwanted side

effects. Our approach learns to effectively use knobs that are

already exposed by the optimizer.

• Ease of deployment as “plan hint”. It is always hard to

deploy learning based approaches that may cause surprising

regressions. One way to deploy such a system is to suggest

the new rule configurations to the customers responsible

for particular workloads. In fact, while rule flags are already

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2560

available and often used by customers, new rule configura-

tions can be simply surfaced as an extension of this capabil-

ity.

• Scalability. New code paths are constantly added to the

optimizer, leading to ever increasing complexity. Besides

rules, the optimizer has hundreds of other configurable flags

and code paths. Our approach is designed such that it can

potentially scale up to all available flags.

• Focus on relevant metrics. Several recent works focus on
improving the cost model and cardinality estimation compo-

nents of a query optimizer [11, 18, 19, 29, 30], including work

on SCOPE [24, 28]. These remain challenging problems, and

it can be hard to fix these errors in a way that improves

the overall query optimization process. More importantly,

improving an individual component, such as cardinality es-

timation, does not guarantee that the generated plans get

better. In contrast, our learned approach attempts to directly

optimize the metric we care about (e.g., execution time, I/O).

4 STEERING THE QUERY OPTIMIZER
In this section, we describe the problem of steering the query op-

timizer using rule hints, discuss the challenges we see in SCOPE,

and give an overview of our approach to address those challenges.

Problem Statement. Given a new SCOPE job, the SCOPE opti-

mizer always uses the default rule configuration to generate the

query plan. Our goal is to output an alternative rule configuration

which is better for optimizing this particular job, and for a given

metric, such as runtime latency.

While the above problem statement is the same as in Bao [14], we

discovered several novel challenges when tackling it for SCOPE.

We discuss them below.

(1) Large space of rule configurations. We consider rules

in SCOPE that affect a much wider range of optimizer be-

haviour than Bao. SCOPE has 219 non-required rules, thus

there is a 2
219

theoretical limit on the number of configu-

rations. Many of these may not compile successfully due

to implicit dependencies, but there are still billions of valid

rule configurations (in contrast to 48 rule configurations

considered in Bao). Therefore, we need a way to come up

with a candidate set of rule configurations which may be

interesting to explore further. At the same time, the large

space of possibilities also make it more likely to discover

interesting behaviors.

(2) Expensive Executions. It is prohibitively expensive to col-

lect data about execution times for too many rule configu-

rations. Therefore, we will not have enough data to learn a

cost model, as in Bao. Instead, we need heuristics to choose

which rule configurations should be executed.

(3) Formulating the learning problem.Due to the number of

configurations, a multi-armed bandit problem does not scale

up to a system like SCOPE. SCOPE query graphs are DAGs

with up to hundreds of operator nodes, thus a graph based

featurization scheme, as in Bao, is not directly applicable.

Overview of our approach. To overcome the above challenges,

we follow four main steps:

(1) Which jobs and rule configurations shouldwe look at?
We select a subset of representative jobs to analyze. For each

of them, we use heuristics to generate up to 1000 candidate

rule configurations. (Section 5).

(2) Can rule configurations improve runtimes?Weuse heuris-

tics to select 10 candidate rule configurations to execute and

find configurations that lead to improved job runtimes. (Sec-

tion 6.1, 6.2).

(3) Extrapolate to other jobs.We take the configurations that

improved runtimes and extrapolate to other jobs across mul-

tiple days and templates which may benefit from these con-

figurations. (Section 6.4).

(4) Learn. We collect run time data for jobs across multiple

days, and train a supervised learning model to choose rule

configurations. (Section 7).

The pipeline described above runs offline by utilizing SCOPE’s

compiler, flags, and A/B testing infrastructure to analyze past work-

loads. We can then use the learned models in an online scenario to

either automatically use different rule configurations for new jobs,

or to recommend new configurations to the customer.

5 DISCOVERING RULE CONFIGURATIONS
The naive approach would be to consider the exponentially many

valid rule configurations for every job. Clearly, this is infeasible.

Therefore, our goal is to adaptively discover 𝑀 interesting rule

configurations for a given job. Then, we recompile the job with

each of the𝑀 rule configurations and analyze the generated query

plans to find plans that are worth executing.

5.1 Job Span
Intuitively, we want to find rule configurations that can lead to

interesting changes in the optimized query plan, while not exploring

toomany unworthy configurations. That is, we only want to explore

configurations enabling/disabling rules that have an impact on the

final query plan. Disabling a rule that can not impact the query plan

will not make a difference (e.g., a rule that optimizes the group

by operator for a job that does not have a group by clause). We

describe how we prune the search space over the rules by means

of a simple heuristic.

Definition 5.1. Job span. Given a job, its span contains all non-

required rules which, if enabled or disabled, can affect the final

query plan.

Generating a job span for optimizers, such as the SCOPE opti-

mizer, where rules can have complex data-driven dependencies is

challenging. Algorithm 1 shows the heuristics we use to approx-

imate the job span. We already know that all the on rules in the

default rule signature can impact the final query plan. Therefore, if

we disable some of these rules, the optimizer may use some other

rules instead. This algorithm seeks to find such alternative rules

by iteratively disabling all rules that were used when optimizing a

job and recompiling the job each time to see which new rules start

getting used instead.

Limitation. The above algorithm does not capture all the possi-

ble rules that could impact the final query plan because complex

dependency structures may be present in the rules, but are not

indirectly observable using our heuristic. For instance, consider

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2561

Algorithm 1 Approximating query span

Input: 𝑄 {Query}

Output: 𝑠𝑝𝑎𝑛
1: 𝑠𝑝𝑎𝑛 ← {}
2: 𝑐𝑜𝑛𝑓 𝑖𝑔← {1, 2, 3..., 220} {all rule ids w/o required rules}

3: 𝑛𝑒𝑤_𝑟𝑢𝑙𝑒𝑠 ← 𝑡𝑟𝑢𝑒

4: while 𝑛𝑒𝑤_𝑟𝑢𝑙𝑒𝑠 do
5: 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ← COMPILE (𝑄 , 𝑐𝑜𝑛𝑓 𝑖𝑔) {gets the rule signature

for a query compiled with a given config.}

6: 𝑜𝑛_𝑟𝑢𝑙𝑒𝑠 ← GET_ON_RULES (𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒) {finds all the rules

in the signature bit vector that are 1}

7: if 𝑜𝑛_𝑟𝑢𝑙𝑒𝑠 == ∅ then
8: 𝑛𝑒𝑤_𝑟𝑢𝑙𝑒𝑠 ← 𝑓 𝑎𝑙𝑠𝑒

9: else
10: 𝑐𝑜𝑛𝑓 𝑖𝑔← 𝑐𝑜𝑛𝑓 𝑖𝑔 \ 𝑜𝑛_𝑟𝑢𝑙𝑒𝑠
11: end if
12: end while

Rule Category
0

5

10

15

N
u
m

b
e
r

o
f
R

u
le

s

On-by-Default Implementation Off-by-Default

Figure 3: Average number of rules (±1 std.) in the span for each
job in a day of Workload A, grouped by each category.

three rules 𝐴, 𝐵,𝐶 in which 𝐵 and 𝐶 are alternative rules, but both

have a dependency on 𝐴, such that they can only be used if rule 𝐴

is used. Let’s say that with all rules enabled, 𝐴 and 𝐵 are in the rule

signature. In its first iteration, the heuristic algorithm computes

the job spans by disabling both rules 𝐴 and 𝐵. Thus, it will fail to

discover that rule 𝐶 can impact the final plan as well. While to

address this shortcoming, we need more detailed knowledge about

the rules, and their dependencies, we can already find many inter-

esting rule configurations using our heuristic despite missing these

complex dependencies, as we show in our analysis in Section 5.3.

5.2 Configuration Search
Relative to the total number of rules, most queries have much fewer

rules in their span. For instance, Figure 3 shows the average, and

standard deviation of the number of rules in the span of each job

on a single day on Workload A. We group these rules by the rule

categories described earlier. On average we see that only up to 20

rules among the 219 non-required rules are used by each job. This

reduces the search space for rule configurations considerably.

Assuming independence of rule categories. Informally, two

rules can be considered independent if enabling or disabling one

of them does not impact the behaviour of the other rule in a query

optimizer. This may be because they apply to different parts of a

job. Intuitively, there must be a lot of rules in a query optimizer

which are usually independent: for instance, particular join imple-

mentation rules are probably independent of certain rewrite rules.

Knowing subsets of rules are independent can dramatically reduce

the search space of rule configurations. For instance, consider 5

rules. There are 2
5 = 32 rule configurations. If we can establish that

there are two groups of rules with two and three rules such that

the groups are independent of each other. Then, we will need to

only explore 2
2 + 23 = 12 rule configurations. While it is hard to

formally establish, and discover such independent subset of rules,

in this work we make the assumption that each category of rules

are independent of the other categories. In practice, this makes

exploring the space of rules much easier.

Randomized Configuration Search. We use randomized search

to enumerate𝑀 candidate configurations. For a given job, the list

of rule configurations are generated by:

(1) Enable all the rules that are not in the span of the given job.
2

(2) For each rule category, independently sample a subset of

rules from the job span. Disable these rules, and enable all

others. This gives us a new rule configuration.

(3) If the rule configuration has not been seen before, add it to

the candidate list. Repeat until𝑀 configurations are gener-

ated.

5.3 Recompilation Results

Selecting jobs to analyze. We run our initial analysis on jobs

on one day from Workload A, Workload B, and Workload C. We

filter out jobs that are faster than five minutes and longer than

one hour. We avoid the short running jobs because the runtime

variance makes it extremely hard to discern improvements between

alternative query plans. We avoid the long running jobs because

re-executing many alternative plans can take really long. From the

remaining jobs, we select a random sample of 10−20% queries from

each workload. We generate up to 1000 unique rule configurations

for each job to recompile. Surprisingly, for most queries, some of

the recompiled plans with the new rule configurations have lower

estimated costs. Figure 4 shows examples of queries fromWorkload

A with the default cost, and the recompiled costs for each rule

configuration. This appears paradoxical because a cascades style
optimizer like SCOPE guarantees that it finds the lowest estimated
cost plan in the search space.

Why does the optimizer find lower cost plans with different
configurations? There are a few subtle ways by which chang-

ing rule configurations can impact the way estimated costs are

computed. The SCOPE optimizer guarantees to find the lowest esti-

mated cost plan in the search space, but this only holds for a given

set of cardinality estimates and heuristics. Changing the rule con-

figurations can impact these, thus the costs across recompilation

runs with different rules are not directly comparable. A few ways

in which new configurations can lead to lower costs are:

2
If a rule does not impact the final query plan, then it makes no difference whether it

is enabled or disabled. But there can also be rules that can impact the final query plan,

but were missed when computing the job span. Thus, leaving these enabled can still

be useful.

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2562

105

106

C
o
s
t

J 1

Default

106

107

108
J 2

106

107

108

J 3

107

108
J 4

105

106

107
J 5

107

109

C
o
s
t

J 6

107

108

109

J 7

106

107

108
J 8

106

108

J 9

106

107

108
J 10

Rule Configuration

106

107

C
o
s
t

J 11

Rule Configuration

106

107

108

J 12

Rule Configuration

106

107

108

J 13

Rule Configuration

105

106

107

J 14

Rule Configuration

107

109
J 15

Estimated cost for rule configurations tried for 15 random jobs

Figure 4: Comparing the estimated cost of the default rule configuration versus all the candidate rule configurations for 15 randomly selected
queries inWorkload A. Even though SCOPE cascade-style optimizer guarantees that the plans returned are the ones with the lowest-cost, still
our approach can find plans with estimated costs lower than the default rule configuration.

(1) Changing node properties. Each of the nodes in the query
graph have various logical and physical properties, such as

cardinality estimates or costs, that are estimated based on

heuristics and assumptions by SCOPE. Alternate rule con-

figurations can change how these properties are calculated,

which naturally lead to different cost estimates. For example,

changing the order of filters can impact cardinality estima-

tion (due to correlations, skew, or other reasons) at each

node and hence the estimated costs.

(2) Degree of Parallelism. Different rules can influence the

distributed nature of a query plan. This can range from how

the input is distributed to different containers, to the degree

of parallelism used, to the number of containers launched

for a job. However, it is again not possible to explore all

the distributed options exhaustively. SCOPE’s search space

heuristically selects a few degrees of parallelism to explore.

Since the heuristics depend on the logical properties, like

cardinality estimates, it is possible that with a different rule

configuration, different degrees of parallelism are chosen.

Finding lower estimated cost plans with different rule configu-

rations in SCOPE is a key difference with Bao. In PostgreSQL, the

estimated costs are directly comparable under the different rule

configurations considered in Bao. But, the plan found without dis-

abling any flag would be the cheapest cost plan (but not the best

plan, since mis-estimates or wrong cost model assumptions may

mean that other plans can execute faster), since the current set of

hints are limited to scans and joins, and they do not impact the

node properties [14].

6 EXECUTING RULE CONFIGURATIONS
In the previous section, we saw how we can explore the large

rule configuration space and discover interesting configurations

with lower estimated costs. In this section, we dig into the runtime

performance impact of these interesting rule configurations.

Figure 5: Comparing the costs (x-axis) v/s runtimes (y-axis). Each
point is a query executed with the default rule configuration.

6.1 Choosing rule configurations to execute
One of the key components in Bao was a learned cost model which

let their system choose among the different rule configurations

[14]. This was possible because there were few rule configurations,

and the execution time of the queries was much shorter. Thus, Bao

could collect exhaustive data about different kinds of queries and

rule configurations to train their model. This is not possible with

hundreds of thousands of expensive jobs in production workloads

and limited pre-production resources for A/B testing. Therefore, we

use heuristics to choose which jobs, and which of their recompiled

SCOPE plans are executed.

Using the cost model. Even though the estimated cost of plans

recompiled with different rule configurations are not directly com-

parable, it is still a useful signal about the plan quality. Plans which

are cheaper, or close to the cost of the default plan, indicate that

the optimizer thinks the new plan is at least not a bad plan. The

jobs are selected by the following heuristics:

(1) Cheaper plans.We sample from the jobs where the recom-

piled plans were clearly cheaper (difference greater than

a workload specific threshold in the estimated cost) than

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2563

Job
−100

−50

0

50

100

R
u
n
ti
m

e
 (

%
 C

h
a
n
g
e
)

(a) Workload A
Job

−100

−50

0

50

100

(b) Workload B
Job

−100

−50

0

50

100

(c) Workload C

Figure 6: Jobs selected where we find cheaper plans, or jobs where the default cost is extremely low, but the runtime is not. 10 cheapest (by the
cost model) rule configurations executed. Percentage change in runtime of best alternative rule configuration from default (lower is better).

−100

−50

0

50

100

R
u

n
ti
m

e
 (

%
 C

h
a

n
g

e
)

−100

−50

0

50

100

C
P

U
 t

im
e

 (
%

 C
h

a
n

g
e

)

Job
−100

−50

0

50

100

I/
O

 t
im

e
 (

%
 C

h
a

n
g

e
)

(a) Rule configurations w/ best runtimes.

−100

−50

0

50

100

−100

−50

0

50

100

Job
−100

−50

0

50

100

(b) Rule configurations w/ best CPU times.

−100

−50

0

50

100

−100

−50

0

50

100

Job
−100

−50

0

50

100

(c) Rule configurations w/ best I/O times.

Figure 7: Workload B jobs. Each bar is a different query (Each plot has the same order of queries.), showing percentage change for the
SCOPE metric from the default rule configuration to an alternative configuration (lower is better). For each query, we try 10 alternative rule
configurations. In (a), we select configurations with best runtimes - this can lead to more regressions on other metrics, like CPU time. In (b)
and (c) we select configurations with best CPU times and best I/O times, respectively.

the default plans. It makes intuitive sense to execute such

plans, if only to find whether cheaper cost indicates faster

runtimes.

(2) Jobs with low cost, high runtimes. Figure 5 shows a scat-
terplot of the estimated cost and runtime of the default rule

configuration for all jobs during a day in Workload A. No-

tice, the jobs in the top left corner: these were cases with

low costs, i.e., the optimizer expected them to run fast, but

actually the runtimes are significantly higher. Since the cost

model prediction was wrong for these jobs, it suggests that

some cost model assumptions did not hold. We sample from

such jobs with appropriate thresholds on cost, and runtime.

For each of the jobs selected above, we select the 10 cheapest al-

ternative rule configurations and execute them. This lets us explore

a diverse set of reasonable plans for each job. In total, we picked

2,110 rule configurations, across 211 jobs, for A/B testing in the

pre-production environment.

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2564

6.2 A/B Testing Results
Executing all the alternative configurations amount to 3960 hours

of execution time. Each workload has different kind of jobs, but we

observe similar trends in all of them. Figure 6 shows the percentage

change in runtimes from the default to the best rule configuration

for the executed jobs. Notice that the maximum possible improve-

ment in runtime can lead to a 100% change (since runtimes can not

be negative), but regressions can be larger than 100%.

Runtimes. At least one of the alternative rule configurations im-

prove runtimes for a majority of the jobs. We see a similar trend,

and even magnitude of improvement in Workload A and Workload

B. There are jobs that get up to 90% faster — translating to several

hours saved in absolute runtimes. Workload C jobs show the same

trend but the magnitude of improvements (and regressions) are

smaller. This is partially because we analyzed fewer jobs in Work-

load C, but also because longer run times lead to lower percentage

changes (e.g., improving a 10 minute job by 5 minutes will give a

50% improvement, while improving a 10 hour job by an hour is just

a 10% improvement).

Different Metrics. In Section 3, we described multiple metrics of

interest in SCOPE. In Figure 7, we zoom in to theWorkload B results

to explore how all these metrics are impacted by changing rule

configurations. One natural question is: do all the metrics improve
together? We executed ten alternative configurations for each job.

We show how each metric varies for 100 jobs when we choose

the best configurations for runtime (Figure 7a), CPU times (Figure

7b), or I/O times (Figure 7c). There are many cases where we see

improvement on each metric (green bars from the top row to the

bottom row). But more often, there is an inherent tension between

all the metrics. In Figure 7a, we see regressions (red bars) in CPU

time and I/O time for many jobs with improved runtimes. In Figure

7b, these regressions seem to mostly go away for the CPU times

as for each job we pick one of the ten configurations that led to

the best CPU time. As before, we still see regressions on I/O time,

but now we also see more regressions in runtime. A similar pattern

plays out in Figure 7c.

This presents a complex, but interesting optimization landscape.

We could potentially have separate models that optimize for each

metric individually, and choose which one to use based on the

context. For instance, when there is high load on the servers, we

may want to minimize one of the resource (CPU time, I/O times)

while when there is less load, we may simply want the fastest

runtimes. More complex policies may take into account customer

requirements and so on. We could also imagine designing a loss

function that seeks to balance the relative importance of eachmetric,

and try to do the best across them all. Exploring these ideas is

beyond the scope of the present work.

When the cost model is completely wrong. The cost model

may be wrong, in which case, the heuristic to choose the cheapest

configurations might miss good plans that are considered expensive

by the cost model. To explore this scenario, we selected twenty

random jobs and executed several randomly selected candidate

configurations for them. We found only one example where an

alternative plan was significantly better. While there is a lot of

potential in learning a cost model for SCOPE, and using it to select

Workload

A B C

Queries 36 155 45

ΔRuntime -1689s -663s -400s

ΔPercentage -30% -15% -7%

Table 3: Average runtime change if we always choose the
best known rule configurations, in terms of seconds and per-
centage change from the default configuration’s runtime for
the subset of jobs we analyzed.

interesting rule configurations (similar to how it was done in Bao),

this experiment also shows that it is much harder to find such

exceptional cases. Therefore, we decided to focus our attention

on the better rule configurations we discovered by trying rule

configurations based on the cost model output.

Summary. Table 3 shows the runtime change, and percentage

change from the default runtime, for the selected jobs if we always

chose the best rule configuration (including the default one, since

as we saw, for some jobs none of the different rule configurations

lead to improvement). On average we see jobs get 7 − 35% faster,

including jobs that speed up by 90%. These improvements would

make an average runtime improvement of 400 to 1700 seconds, with

many jobs improving by several hours — a significant improvement

for SCOPE customers.

6.3 Why do different rule configurations
improve job runtimes?

Let us dig deeper into the performance impact of changing rule con-

figurations. The interaction of different rules in a query optimizer

can be complex, therefore it is hard to pinpoint what gives rise to

different emergent behaviors. We can think of these rule configura-

tions as exploring slightly different paths within the optimizer. One

hypothesis is that by disabling rules we just block certain paths —

which may have been chosen due to bad estimates or heuristics in

the optimizer. This may nudge the optimizer down a better path

for the given job. It may have been possible for the optimizer to

discover the best path by itself if its cardinality estimates and cost

model assumptions were all perfect - but this is unrealistic. Never-

theless, there are a few interesting patterns we observe that lead to

improved job performance.

Do lower estimated costs always result in lower runtimes?
No. As described in §5, there can be many reasons for lower esti-

mates costs, and these don’t correspond to better plans. We use the

low estimated cost as a signal of potentially interesting alternative

plans.

Which rules change in jobs with improvements?When a new

rule configuration leads to faster runtimes than the default config-

uration, we may want to know which changes caused the improve-

ment. We can directly compare the enabled or disabled rules of the

two configurations. But not all changes in the rule configurations

are meaningful. For instance, it may be that disabling a rule has no

impact on the generated query plan. Or, there may be ten differ-

ences between the two configurations, but only one of them leads

to a change in query plan. We define RuleDiff to only look at which

rule changes actually impacted the query plans.

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2565

Job
Runtime
%change

Rules only in
default plan

Rules only in
best plan

𝑄𝐴1
𝑄𝐴1𝑄𝐴1 −90%

JoinImpl2

SelectOnProject

GroupbyBelowUnionAll

...8 more rules

CorrelatedJoinOn

-UnionAll2

𝑄𝐴2
𝑄𝐴2𝑄𝐴2 −86%

HashJoinImpl1

SelectOnProject

SelectPredNormalized

...3 more rules

-

𝑄𝐴3
𝑄𝐴3𝑄𝐴3 −75% UnionAllToUnionAll

UnionAlltoVirtual

-Dataset

𝑄𝐵1𝑄𝐵1𝑄𝐵1 −96% TopOnRestrRemap

SelectOnTrue

CollapseSelects

𝑄𝐵2𝑄𝐵2𝑄𝐵2 −80% JoinImpl2 HashJoinImpl1

𝑄𝐵3𝑄𝐵3𝑄𝐵3 −70% ProcesOnnUnionAll

UnionAllToUnionAll

UnionAlltoVirtual

-Dataset

Table 4: RuleDiff for a few sample jobs. Runtime %change is
the percentage change from the default configuration’s run-
time to the best configuration.

Definition 6.1. RuleDiff. For a given job and new rule configu-

ration, we compare the rule signature bit vectors we get using the

default rule configuration, with the rule signature using the new

rule configuration. The rules whose corresponding bits are equal

in both the bit vectors were not directly impacted by the new rule

configuration. The rules which were 1 in the default rule signature

bit vector, but 0 in the new configuration’s bit vector were not

used in the new query plan. This could be because these rules were

disabled. These rules are referred to as rules only in default plan.
Rules only in the new plan are defined similarly.

In Table 4, we show RuleDiffs for the best configurations found

for particular jobs in each workload. For𝑄𝐴1 fromWorkload A- we

see that one additional rule was seen in the best plan, and many

additional rules were used in the default plan. The additional rule

in the best plan was an off-by-default rule, which explains why it

was not in the default plan.

Is enabling off-by-default rules enough for𝑄𝐴1𝑄𝐴1𝑄𝐴1? No. We have

several configurations that also enable the same off-by-default rule

for𝑄𝐴1𝑄𝐴1𝑄𝐴1, and disable a different subset of rules. All of these result

in runtimes faster than the default, but these are 7 − 9𝑥 slower

than the best configuration. It is not immediately obvious why this

particular rule configuration leads to a plan with the fastest runtime

to even experts in the SCOPE optimizer team. This highlights the

fact that these rules interact in very complex ways, and it is hard

to manually configure these.

Disabling rules is crucial. Some of the biggest gains occur due

to disabling rules. This is clearly visible in the RuleDiffs with many

rules only appearing in the default plan, but not in the best plan. In

𝑄𝐴2𝑄𝐴2𝑄𝐴2, no additional rules were used in the best plan; instead six fewer

rules were used, and it led to an almost 90% improvement in runtime.

This supports our hypothesis that one way these rule configurations

help improve performance is by blocking optimization paths that

would have led to a bad plan for a given job.

Alternative rules. For both jobs𝑄𝐴3𝑄𝐴3𝑄𝐴3 and𝑄𝐵3𝑄𝐵3𝑄𝐵3, rule UnionAllToVir-

tualDataset appears in the best plan, and UnionAllToUnionAll ap-

pears in the default plan. Both of these rules are on by default. Based

on the cost model, the optimizer must have believed UnionAll-

ToUnionAll is the better choice, but some assumptions or estimates

for this job were wrong. Rather than correct these, our approach

just disabled the rule that was leading to the optimizer’s decision

— thus guiding it towards using the other rule in the final plan. A

similar motif is also observed for𝑄𝐵2𝑄𝐵2𝑄𝐵2.

6.4 Extrapolating to other jobs
In the previous section we discovered good rule configurations of-

fline for a subset of jobs on a single day. The process of finding these

configurations is expensive, particularly since it required executing

plans from many alternative rule configurations for each job. For

it to be useful, we need to generated these rule configurations for

new jobs at compile time. Therefore, we seek to understand other

scenarios where we can utilize the rule configurations that led to

improved runtimes. Clearly they are not useful for every job in

the workload. On the other extreme, these configurations seem

to usually work well on jobs from the same recurring templates,
across many days. However, as we saw in Table 1, there are tens

of thousands of such templates, often with just one or a handful

of jobs in each template every day. Discovering, and learning rule

configurations for every template is therefore not scalable. Further-

more, even small differences in a job, such as a single different input

name, will lead to different recurring template identifiers — even

though the jobs may be almost identical. Therefore, we choose the

rule signature as the level of granularity across which the same set

of rule configurations could be useful.

Definition 6.2. Rule signature job group. This is the set of jobs
whose default rule signature map to the same bit vector. We will

refer to it as a job group.

Are the jobs with the same rule signature similar from an
optimizer’s perspective? A job group can have many templates,

inputs, and jobs with varying runtimes. This is clearly not a homo-

geneous group, but it makes intuitive sense that these may have

similar properties from an optimizer’s perspective. The same rule

signature implies that these jobs have similar operators, and went

down similar paths within the query optimizer. At the same time,

this may not always be true — which motivates the need for learn-

ing.

We use the results from §6.1 to select base jobs where alternative
configurations led to improved runtimes. From the base jobs, we

derive the job groups they belong to. We extrapolate that these

configurations can be useful for other jobs with the same rule

signature across multiple days. The shared rule signature between

the base jobs, and the new unseen jobs also implies that the new

configurations are not just random changes — the rules disabled or

enabled in a new configuration were selected such that they impact

the rules used in the base jobs.

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2566

Is learning needed? As we apply the new rule configurations to

new unseen jobs, across multiple weeks, we observe two scenarios:

• Thenewconfiguration does not cause regressions.There
are cases where a configuration that led to runtime improve-

ments in a base job appears to mostly work well on all the

jobs in a job group of the given workload. An example from

Workload A was shown in Section 1, Figure 1. These rule

configurations appear to benefit almost all jobs sampled ran-

domly across almost four weeks in the same job group. This

is an ideal situation, and we could derive the benefit of our

approach without much risk of a regression. Clearly, this

behaviour could change in the future as the predicates and

input streams of these jobs may evolve. This risk can be

mitigated by re-running our pipeline every week.

• New configuration can cause a regression. A more com-

mon scenario is where a configuration leads to improvements

for some jobs, but a regression for others in the same job

group. In such situations, we try to use a learned model

to choose between the configurations based on the input

features of the new job. This is explored further in §7.

What fraction of the daily jobs may be impacted?We did our

analysis above on a fraction of randomly chosen jobs from a single

day. Let us do some back of the envelope calculations for Workload

B jobs to estimate the impact these rule configurations may have on

the whole workload. It is not very critical to improve performance

on the short running jobs since they consume significantly less

resources. There are about 10%, or 1624 jobs daily that last longer

than 5 minutes and these map to 300 different job groups. We

uniformly sampled about half of these, and ran our recompilation

pipeline for 838 jobs. From these, we used heuristics to select 155

jobs (or about 20%) for execution of the 10 cheapest alternative

plans. We find runtime improvements in 120 jobs, with the change

ranging from −3% to −90%. These 120 jobs belong to 44 job groups.

This suggests that at least 10 − 20% of the long running daily jobs

could be improved using this pipeline. However, the improvements

described in this section relied on executing multiple plans. In a

real system, we will need to choose one rule configuration each

time. Next, we formulate this as a learning problem and do some

very preliminary analysis to see how well can we choose the best

rule configurations.

7 LEARNING RULE CONFIGURATIONS
In this section, we see how to learn to choose a rule configuration

given a new job.

7.1 Formulating the learning problem
Dataset. For training a learned model, we collect a dataset of run-

times for a given combination of a job and a rule configuration.

We select three rule signatures from Workload B, and collect data

on queries over a few weeks whose default rule signature maps

to these (i.e., jobs that belong in the same job group). All of these

job groups have more than a dozen jobs every day, and there is

no one rule configuration that always leads to improvements. For

each job group, we run our pipeline for one to three jobs, and find

configurations leading to improvements. We select the three fastest

(runtime) configurations of each job — therefore, we get up to 𝐾

candidate configurations for each job group. Then, we sample 𝑀

jobs from all the jobs mapping to these job groups during a period

of two weeks, and execute each of the 𝐾 configurations for every

job.

Learning Problem. We treat the dataset of samples in each job

group as an independent learning problem. The objective is to

select one of the 𝐾 candidate configurations for a given query.

We use supervised learning to train a model to pick of of the 𝐾

configurations for each job group.

7.2 Featurization
For any learning based approach, we need to featurize each job.

Since only the decisions related to join ordering were considered

in Bao, the PostgreSQL query plans were relatively small trees. In

contrast, SCOPE query plans are large DAGs, consisting of 100𝑠 to

even 1000𝑠 of operator nodes, including widespread use of customer

user defined operators. Furthermore, a SCOPE script is compiled

into an optimized query plan, which is converted into a DAG of

stages and is executed in a distributed fashion, and altogether the

SCOPE engine emits several pieces of disparate logs from each of

these steps that are hard to featurize, and may not be even relevant

for the purpose of a given task. Therefore, featurizing a SCOPE job

is a challenging problem.

Feature vector. We use a feature vector to capture the most im-

portant features for choosing between the 𝐾 rule configurations

for samples from a particular job group. These include: (1) Job level

features. These are global properties of the particular job which

includes estimated input size, hash of the inputs, and the hash

of the query template. (2) Rule configuration features. For each

configuration we use the estimated cost of a plan and a bit vec-

tor representing the RuleDiff with the default configuration. (3)

Query graph features. We reserve a spot in the feature vector for

each possible operator type. These include operator id, and average

estimated cost and cardinality for all repetitions of the operator.

Encoding features.We encode all continuous features using min-

max normalization to scale its value in between 0 and 1. For categor-

ical features with small alphabet sizes we use one hot encoding. For

categorical features with large alphabet sizes, we use a deterministic

hashing scheme encoding each value to one of 50 bins [21].

7.3 Learning Model
Lightweight model. For each job group, we use a fully connected

neural network with one hidden layer of size 1024. These models

have a size of about 30MB each and take a minute to train.

Loss function.We treat the learning as a regression problemwhere

the objective is to estimate each of the normalized 𝐾 runtimes

corresponding to the 𝐾 possible rule configurations for a query. A

typical way to optimize regression tasks is to use mean squared

error. But, this tries to get a precise estimate for each candidate

configuration. This may often not be needed because we really

only care about choosing the fastest configuration. Instead, we use

a continuous version of the cross entropy loss, referred to as the

binary cross entropy loss in PyTorch [20].

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2567

−4000

−2000

0

2000

4000

R
u

n
ti
m

e
 C

h
a
n

g
e
 (

S
e

c
o
n
d

s
)

Job
−100

−75

−50

−25

0

25

50

75

100

R
u

n
ti
m

e
 (

%
 C

h
a
n

g
e

)

(a) Job Group 1

−2000

−1000

0

1000

2000

R
u

n
ti
m

e
 C

h
a
n

g
e
 (

S
e

c
o
n
d

s
)

Job
−100

−75

−50

−25

0

25

50

75

100

R
u

n
ti
m

e
 (

%
 C

h
a
n

g
e

)

(b) Job Group 2

−1000

−500

0

500

1000

R
u

n
ti
m

e
 C

h
a
n

g
e
 (

S
e

c
o
n
d

s
)

Job
−100

−75

−50

−25

0

25

50

75

100

R
u

n
ti
m

e
 (

%
 C

h
a
n

g
e

)

(c) Job Group 3

Figure 8: Performance of the learned model relative to the default rule configuration. Change in runtimes (above), and percentage change in
runtimes (below) from the default lower is better. These are unseen queries from three job groups sampled over weeks. For each query, the
learned neural net model chooses from 𝐾 potential rule configurations (including default).

1 2 3
Mean 90P 99P Mean 90P 99P Mean 90P 99P

Best 5458 14K 14.8K 19.8K 26K 27K 2966 13.8K 15.3K

Default 6461 16.3K 18.3K 20.7K 26.9K 28.9K 3304 14.7K 16.8K

Learned 5724 14.7K 15.4K 20.2K 26.2K 27K 3252 14.6K 16.8K

Table 5: Runtimes (seconds) for job groups 1, 2 and 3 with the best
(known), default and learned configurations.

7.4 Learning Results

Setup. Job group 1 has 201 jobs and 10 possible rule configurations,
job group 2 has 75 jobs and 7 possible rule configurations, and

job group 3 has 157 jobs and 10 possible rule configurations. We

randomly split the jobs in all three job groups into 20% validation

set, and 40% training and test sets. We tune the hyperparameters of

the model on the validation set, and report results on the test set.

Results summary. The runtimes are presented in Table 5, and

the changes from the default runtime for each query are shown

in Figure 8. Overall, we see improvements in each job group, but

there are always some regressions as well.

Job group 1. There are large improvements, up to an hour faster

on runtimes, across a large fraction of the jobs. Notice that the

runtimes have different scales, thus the magnitude of percentage

improvements do not alignwith the absolute runtime improvements

(shorter running jobs can have larger improvements). As can be seen

in Table 5, the learned model is close to making the best decisions.

Job group 2. These are significantly longer running jobs — one

impact is that the percentage values appear to be relatively smaller

than other job groups. But we see consistent improvements of up

to 2000 seconds across multiple jobs, while the regressions appear

to be smaller.

Job group 3. This appears to be the hardest job group to optimize.

Notice, the jobs without green or red bars — these are cases where

our learned model recommends the default configuration. But it

does find improvements of up to a 1000 seconds for multiple other

jobs. Meanwhile, the regressions have much lower magnitudes. But,

there is potential for more significant improvements, as we can see

from the best runtimes in Table 5.

8 CONCLUSION AND FUTUREWORK
In this paper, we presented how the SCOPE optimizer — an industry-

grade cloud-enabled query optimizer — can take advantage of a

learning approach, such as the one introduced in Bao [14]. We in-

troduced the ideas of a rule signature and job span that help us

navigate the large space of rule configurations, efficiently discover

interesting configurations, and even extrapolate them to other un-

seen jobs. Our results over three production workloads show that

we can achieve up to 90% better runtime latencies, with 7 − 35%
improvement on average, while requiring minimal changes to the

SCOPE optimizer. We believe that the directions outlined in this

paper open many doors, some of which we are currently exploring

ourselves. For instance, there are multiple ways to improve the

heuristics used for the generation of the job span and the candidate

rule configurations. Such improvements can discover independent

subsets of rules, which will make the space of rule configurations

smaller, therefore enabling exploration of better configurations. We

also plan to use feedback from the execution results to guide future

iterations of the configuration search. Finally, there are also hun-

dreds of additional configurable options in the SCOPE optimizer,

and we may be able to generate interesting behaviours by also

including them in the candidate configurations.

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2568

REFERENCES
[1] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno, Ming-Chuan Wu, Ion Sto-

ica, and Jingren Zhou. 2012. Re-Optimizing Data-Parallel Computing. In

Proceedings of the 9th USENIX Conference on Networked Systems Design and

Implementation (San Jose, CA) (NSDI’12). USENIX Association, USA, 21.

[2] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J Mior, and

Daniel Lemire. 2018. Apache calcite: A foundational framework for optimized

query processing over heterogeneous data sources. In Proceedings of the 2018

International Conference on Management of Data. 221–230.

[3] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Simon

Weaver, and Jingren Zhou. 2008. SCOPE: easy and efficient parallel processing of

massive data sets. Proceedings of the VLDB Endowment 1, 2 (2008), 1265–1276.

[4] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin

Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, Jian-

sheng Huang, et al. 2016. The snowflake elastic data warehouse. In Proceedings

of the 2016 International Conference on Management of Data. 215–226.

[5] Anshuman Dutt, Chi Wang, Vivek R. Narasayya, and Surajit Chaudhuri. 2020.

Efficiently Approximating Selectivity Functions using Low Overhead Regression

Models. Proc. VLDB Endow. 13, 11 (2020), 2215–2228. http://www.vldb.org/

pvldb/vol13/p2215-dutt.pdf

[6] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,

and Surajit Chaudhuri. 2019. Selectivity estimation for range predicates using

lightweight models. Proceedings of the VLDB Endowment 12, 9 (2019), 1044–

1057.

[7] Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data

Eng. Bull. 18, 3 (1995), 19–29.

[8] Jayant R Haritsa. 2010. The Picasso database query optimizer visualizer.

Proceedings of the VLDB Endowment 3, 1-2 (2010), 1517–1520.

[9] Alekh Jindal, Hiren Patel, Abhishek Roy, Shi Qiao, Zhicheng Yin, Rathijit Sen,

and Subru Krishnan. 2019. Peregrine: Workload Optimization for Cloud Query

Engines. In Proceedings of the ACM Symposium on Cloud Computing. 416–427.

[10] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag, Marc

Friedman, Yifung Lin, Konstantinos Karanasos, and Sriram Rao. 2018. Com-

putation reuse in analytics job service at microsoft. In Proceedings of the 2018

International Conference on Management of Data. 191–203.

[11] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and

Alfons Kemper. 2018. Learned cardinalities: Estimating correlated joins with

deep learning. arXiv preprint arXiv:1809.00677 (2018).

[12] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion

Stoica. 2018. Learning to optimize join queries with deep reinforcement learning.

arXiv preprint arXiv:1808.03196 (2018).

[13] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and

Thomas Neumann. 2015. How good are query optimizers, really? Proceedings

of the VLDB Endowment 9, 3 (2015), 204–215.

[14] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-

izadeh, and Tim Kraska. 2020. Bao: Learning to Steer Query Optimizers. arXiv

preprint arXiv:2004.03814 (2020).

[15] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,

Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A learned

query optimizer. arXiv preprint arXiv:1904.03711 (2019).

[16] Ryan Marcus and Olga Papaemmanouil. 2018. Deep reinforcement learning for

join order enumeration. In Proceedings of the First International Workshop on

Exploiting Artificial Intelligence Techniques for Data Management. 1–4.

[17] Corp. Microsoft. 2020. SQL Server. Retrieved November 23, 2020 from https:

//www.microsoft.com/en-us/sql-server/

[18] Parimarjan Negi, Ryan Marcus, Hongzi Mao, Nesime Tatbul, Tim Kraska, and

Mohammad Alizadeh. 2020. Cost-Guided Cardinality Estimation: Focus Where

it Matters. In 2020 IEEE 36th International Conference on Data Engineering

Workshops (ICDEW). IEEE, 154–157.

[19] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S Sathiya Keerthi.

2019. An Empirical Analysis of Deep Learning for Cardinality Estimation. arXiv

preprint arXiv:1905.06425 (2019).

[20] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

2017. Automatic differentiation in pytorch. (2017).

[21] Dipanjan (DJ) Sarkar. 2019. Categorical Data. https://towardsdatascience.com/

understanding-feature-engineering-part-2-categorical-data-f54324193e63

[22] Rathijit Sen, Alekh Jindal, Hiren Patel, and Shi Qiao. 2020. AutoToken: predicting

peak parallelism for big data analytics at Microsoft. Proceedings of the VLDB

Endowment 13, 12 (2020), 3326–3339.

[23] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, ChadWhipkey, Eric Rollins,

Mircea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner, et al. 2013. F1:

A distributed SQL database that scales. (2013).

[24] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.

Cost models for big data query processing: Learning, retrofitting, and our find-

ings. In Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data. 99–113.

[25] Florian M Waas. 2008. Beyond conventional data warehousing—massively par-

allel data processing with greenplum database. In International Workshop on

Business Intelligence for the Real-Time Enterprise. Springer, 89–96.

[26] FlorianWolf, Michael Brendle, NormanMay, Paul RWillems, Kai-Uwe Sattler, and

Michael Grossniklaus. 2018. Robustness metrics for relational query execution

plans. Proceedings of the VLDB Endowment 11, 11 (2018), 1360–1372.

[27] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolf-

gang Lehner. 2019. Cardinality estimation with local deep learning models.

In Proceedings of the Second International Workshop on Exploiting Artificial

Intelligence Techniques for Data Management. 1–8.

[28] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi

Qiao, and Sriram Rao. 2018. Towards a learning optimizer for shared clouds.

Proceedings of the VLDB Endowment 12, 3 (2018), 210–222.

[29] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,

and Ion Stoica. 2020. NeuroCard: one cardinality estimator for all tables. arXiv

preprint arXiv:2006.08109 (2020).

[30] Zongheng Yang, Eric Liang, Amog Kamsetty, ChenggangWu, Yan Duan, Xi Chen,

Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019. Deep

unsupervised cardinality estimation. arXiv preprint arXiv:1905.04278 (2019).

[31] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion

Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud 10,

10-10 (2010), 95.

Industrial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2569

http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
https://www.microsoft.com/en-us/sql-server/
https://www.microsoft.com/en-us/sql-server/
https://towardsdatascience.com/understanding-feature-engineering-part-2-categorical-data-f54324193e63
https://towardsdatascience.com/understanding-feature-engineering-part-2-categorical-data-f54324193e63

	Abstract
	1 Introduction
	2 Related Work
	3 Production Query Processor
	3.1 SCOPE Overview and Workloads
	3.2 Analyzing SCOPE Optimizer Rules
	3.3 Learning Requirements

	4 Steering The Query Optimizer
	5 Discovering Rule Configurations
	5.1 Job Span
	5.2 Configuration Search
	5.3 Recompilation Results

	6 Executing rule configurations
	6.1 Choosing rule configurations to execute
	6.2 A/B Testing Results
	6.3 Why do different rule configurations improve job runtimes?
	6.4 Extrapolating to other jobs

	7 Learning Rule Configurations
	7.1 Formulating the learning problem
	7.2 Featurization
	7.3 Learning Model
	7.4 Learning Results

	8 Conclusion and Future Work
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 49.65, 53.96 Width 249.20 Height 106.94 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 49.6485 53.9562 249.1972 106.9352

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 13
 0
 1

 1

 HistoryList_V1
 qi2base

