
LA-UR-
Approved for public release;
distribution is unlimited.

-QAlamos
NATWNAL LABORATORY
--- EST.1943 ---

Title: Developing a Monte Carlo mini-App for Exascale Co-Design

Author(s): Lawrence J. Cox, Ph.D
Ryan C. Marcus
XCP-DO

Intended for: SC11
Seattle, WA
11/13-18/2011

Distribution in conjunction with electronic poster in LAI\IL
Exhihition Booth

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Monte Carlo Mini-App for Exascale R&D
LA-UR ii-xxx

Developing a Monte Carlo mini-App
for Exascale Co-Design

Larry J. Cox, Ryan C. Marcus
X-Computational Physics Division
Los Alamos National Laboratory

Abstract
Exascale computing research and development will need an

understanding of the intended computational applications by the
full spectrum of researchers. Co-design research teams will
require representative applications to guide their research.

One of the important applications is Monte Carlo Radiation
Transport, such as that supported by the ASC software package
MCNP. This paper presents a Monte Carlo "mini-App" for
Exascale R&D that encompasses many of the necessary
algorithmic components of Monte Carlo transport. The
physics in kept intentionally simple to avoid export control
concerns. However, an effort was also made to make it
representative of the "real" physics used in codes such as
MCNP.

The primary goal for this MC mini-App is to clearly define
the computational requirements and constraints while leaving
open as much of the computer science as possible.

A secondary goal of this effort is to develop one or more
sample implementations of the App that may help to advance
Exascale R&D.

As the Exascale R&D progresses, this MC mini-App will
provide a framework to include more realistic physics and to
explore emerging hardware/software paradigms.

1

Monte Carlo Mini-App Jar Exascale R&D
LA-UR II-xxx

1. Introduction

Monte Carlo radiation transport methods are widely-used for studying the
interaction of radiation with matter in almost every scientific and engineering
discipline. Specific areas of application include, but are not limited to, radiation
protection and dosimetry, radiation shielding, radiography, medical physics,
nuclear criticality safety, detector design and analysis, nuclear oil well logging,
isotope production, accelerator target design, fission and fusion reactor design,
decontamination and decommissioning of nuclear facilities These methods are
essential to many NNSA missions.

One example of a Monte Carlo software package is the family of codes referred
to as MCNP. The latest version of this family, MCNP6, is a general-purpose,
Monte Carlo N-£.article code that can be used for neutron, photon, electron, ion
and exotic particle transport. MCNP6 is a merging of the MCNP5 and MCNPX
efforts into a unified, multi-purpose code base. There are thousands of users in
many nations, in many industries and at many universities around the world.

The goal of this effort is to develop a neutral-particle (n,y) Monte Carlo
radiation transport package tailored to solve one or more specific problems of
interest and capable of running on most or all emerging hardware/software
paradigms. Possible domains of interest include, but are not limited to, criticality,
radiography, shielding. For now, criticality will be adopted as the canonical
scientific application.

2

Monte Carlo Mini-App for Exascale R&D
LA-UR II-xxx

2. Project Objectives

Given a geometric configuration, its composition and a source of radiation, the
computational goal of the Me mini-App is to compute the scalar, energy
dependent radiation flux in each geometrical zone.

Flux is defined as number per unit area (e.g., mol/cm2
). The radiation source

may be a fixed (external) source, or it may be material reactivity (e.g., fission in a
nuclear reactor). In the later case, iteration will be needed to arrive at a self
consistent flux (addressed later).

The primary goal will be to clearly define the computational requirements for
the mini-App in terms that can be used to create multiple implementations.

A secondary goal will be to create one or more sample implementations.

3

Monte Carlo Mini-App for Exascale R&D
LA-UR ll-xxx

3. Assumptions and Definitions

Random Number Generator: A parallel-capable random number kernel will
needed that provides a predictable, independent random number sequence to an
arbitrary number of processes. The methodes) used in MCNP6
(src/mcnp random.F90) will form the basis for this functionality and will be recast
as needed into other languages.

(Initial) Source Specification: A description of a radiation source is a required
component of a problem definition. This may be a user-defined external source
(e.g., for radiography), or an initial guess at an internal source (e.g., for criticality).
This data may need some processing, but will remain fixed after startup. It is
needed only in computational step 1 (see Section 4).

Geometry: The geometry will be a "product" mesh (e.g., the geometry
construct allowed in the LNK3DNT format). Each axis is specified as a list of
intercepts. The geometry is the I12/3D outer product of the axis vectors. Cartesian
(XYZ) will be the initial geometry addressed. However, extension to Cylindrical
(RZ, RZ8) and spherical (R) will be kept in mind during development. Distances
will be measured in centimeters (cm). Angles, when implemented, will be
expressed in revolutions (1 rev = 2n radians = 360°).

Composition: The materials present in the geometry can be separately defined
and stored. Since composition information is not needed at the same time
geometric data is needed, keeping them separate offers more flexibility in memory
placement and access . A set of composite mixtures (materials) will be defined
based on their isotopics (specified in atom fractions). The isotopics will remain
fixed during the calculation.

Cross Section Data: To calculate the interaction of the radiation flux with the
geometry and its materials, isotopic cross section data is needed. Because the
material mixtures will not change, cross section data can be loaded and partially
preprocessed at startup. The nature of the radiation sources (radiation type(s),
energy range, reaction channels of interest, etc.) will affect which cross section
data will be needed. A computational kernel for calculating mean free path as a
function of radiation type, energy and material will be needed. For creation of
secondary emissions (child packets), double-differential cross section data may be
required for some isotopes and reactions channels.

Type Defs: The following format is used to define data "types."
Type(obj):

camp
comp2

4

Monte Carlo Mini-App jar Exascale R&D
LA-VR ii-xxx

Type References: The type-component notation obi. comp will be used to
represent a reference to a component of a derived-type instance. For example,
p. pos(l) would be the x coordinate of a packet (see Section 6).

5

Monte Carlo Mini-App for Exascale R&D
LA-UR 11-=-"

4. Startup

A significant amount of one-time preprocessing calculation can be done at
startup. The following sections address some of the data that will remain fixed
during the Monte Carlo calculation after initialization.

4.1 Source Description

Radiation will be described in packets, each representing an amount of a
specific radiation type at a single energy. The intensity of a radiation packet will
be represented by a weight that can change during the calculation.

Volume, plane and point sources may be required, depending on the type of
calculation. Probability distributions in energy, position, direction and intensity
may be needed. These PDFs can be loaded and preprocessed at startup. See
Appendix A for more information on PDF definition and sampling.

4.2 Geometry Description

To define a Cartesian geometry, the following data is required:
Type(geom):

n(l: 3)
Cl (0: n(1))
cz(0:n(2))
C3 (0: n(3))
origin(1: 3)
axis(1: 2,1: 3)

: The number of segments along each axis
: The arrays of bounds for axis 1
: The arrays of bounds for axis 2
: The arrays of bounds for axis 3
: [optional]
: [optional]

The origin and axis components are needed if the geometry is not aligned with the
default coordinate system (up to 9 real values needed). They are used to specify an
offset and/or a rotation.

Even for very large mesh geometries, one can see that the data needed to define
the geometry is relatively small. For example, a billion zones (10003

) would only
require 3012 real values (the bounds and orientation) and 3 integer values (the
segment counts). The number of zones in a problem is the product of the segment
counts along each dimension, n zone = n n(:).

The geometric zones will be indexed as a one dimension array 9 E (1: nzone).

With (i,j, k) E (1: n(l), 1: n(2), 1: n(3)) being the coordinate indices into the 2D
bounds array, 9 is given by:

g(i,j, k) = k + n(3) x [Ci - 1) + n(2) x (i - 1)] (1)

If any of the indices are out of bounds, then we define 9 = 0, indicating that the
location is not in the geometry.

6

Monte Carlo Mini-App for Exascale R&D
LA-UR ii-xxx

The LNK3DNT file format stores the necessary counts and dimensions. It does
not store orientation information (origin, axis). These quantities will need to be
separate, user-defined inputs, if supported.

7

Monte Carlo Mini-App for Exascale R&D
LA-UR ii-xxx

4.3 Material Composition Data

The LNIGDNT format also stores partial mass densities (glcc) for each
material in a zone. However, it does not store isotopics for the materials. A
possible derived type for a material is this:

Type(material):
niso : number of isotopes in the material
tbl(l: niso) : cross section table identifiers
za(l: niso) : ZA numbers for each isotope
at(l: niso) : atom fractions for each isotope
stp(l: nE) : stopping power (See Section 4.4)

Isotopes are specified by za(i) = 1000 x Z(i) + A(i) where Z(i) is the number of
protons and A (i) is the total number of nucleons (protons and neutrons) for
isotope i. For example, the ZA for 238 U is 92238. The tbl(:) component is an
alphanumeric string that identifies the cross section table (or model) to use for each
isotope. The atom fraction component, at(:), is normalized so that L at = 1.
Non-normalized atom fractions in the input will be permitted, setting a
normalization requirement at startup. This will allow the specification of water as
2 hydrogen (za = 1001) and I oxygen (za = 8016).

Each geometric zone may have zero or more materials each with a specified
partial density. A derived type could be defined that contains the number of
materials, the material indices and the material partial densities for a single zone.

Type(zone):

rLmat
m(l: nmat)

p(l: rLmat)

: number of materials homogenized in the zone
: indices into the materials array
: partial mass densities (g/cc)

In this form, the composition data for a single zone can be kept nominally
contiguous and perhaps more easily copied to where it is needed.

Voids (vacuum zones) are indicated by having no materials, z. nmat = O. The
material and density information for each zone is stored in the LNK3DNT file
format. The total density of a zone is the direct sum of the partial densities. The
mass is that sum times the volume of the zone. Total density, mass and volume are
values that can be computed as needed.

Other data-layout possibilities should also be considered. One example would
be to assign the same number of material slots per zone (the problem maximum),
which would make the array components uniform in size across all zones and
eliminate the need to store a variable number of materials per zone.

8

Monte Carlo Mini-App for Exascale R&D
LA-UR Il-xxx

4.4 Material Cross Section Data

The cross sections for radiation interaction with matter are dependent on the
radiation type and energy, the isotopes present. One use of cross sections will be in
calculating the mean free path of a radiation packet. This value can also be
interpreted as an attenuation length. For each radiation type and isotope, there is a
microscopic total cross section. These cross sections are isotope and radiation type
specific and are a function of (radiation) energy. Other factors such as material
temperature can affect cross section values.

The mean free path is a distance over which we expect to have e-1 - 36.7%
attenuation (reduction in intensity) of a radiation source. The weight (representing
the radiation intensity) of a radiation packet p traversing a distance s in a material
with attenuation length A, would be wgt(s) = p. Wo x e-sjJ... The average distance
before any sort of reaction event, the mean-free-path, is this attenuation length by
evaluating the following:

J s x e-sjJ..ds
(s) = J e-sjJ..ds = A

Units analysis can illuminate the approach to calculating mean free paths.
Interaction cross sections (5 are in area units called barns (l barn = 10-
24 cm2jnucleus). Mass densities p are in units of g/cm3

. Isotopic densities can be
expressed in units of Avogadro's number (Av = 6.022 x 1023 nuclei/mol).
Isotope weights are in terms of atomic mass units, AMU, which are equivalent to
mass per mol (g/mol). The product of these units is ((5 x Av x P -7- AMU) =
(em~jnucleus)(nuclei/mel)(g/cm~(met/g) = [cm- I

] or inverse distance. Summed
over isotopes, this gives the reciprocal of the mean free path, A. In this form, all
terms except Av are isotope specific.

Since densities can vary by zone, it is helpful to pull out the overall material
density and replace it in the summation with isotopic atom fractions (a
dimensionless quantity). This gives what can be called a stopping power [cm2/g]
for each material:

_ ~ ((5T (i, E) x m. a[(i))
m. stp(E) - Av x ~ AMU(i)

I

Where the sum is over the isotopes, i, of material m. Note that microscopic total
cross sections, (5T (i, E), and hence the stopping powers, are dependent on the
radiation type and energy, as well as being isotope specific.

9

Monte Carlo Mini-App for Exascale R&D
LA-UR ll-xxx

The mean free path, A [in cm], for the mixture of materials in a zone, Z, is
obtained by summing the stopping powers over the materials, m(j), j E {l, nmat },

in the zone.

A(Z, E) = If (z.p(j) x z. m(j). stp(E)) r
For initial implementations, we may want to use discrete energy ranges

("energy groups") instead of continuous energies. Cross sections specified as
constant over an energy range are called multi-group cross sections and represent a
weighted average over the energy range for the group. The weighting is done with
respect to a specified energy distribution, <peE).

_ ftlE(g) <P(E)O"T(E)dE
O"T(g) =

ftlE(g) <p(E)dE

This fonnula gives the energy-weighted, average total microscopic cross
section, O"T(g), over the energy group 9 where LlE(g) = (Eg -Eg _ 1). Again, note
that these values are isotope and radiation type specific. With the multi-group
approach, stopping powers can be calculated in advance for each material and
energy group. If a continuous energy approach is adopted, some level of pre
calculation may be possible coupled with an interpolation scheme for obtaining
values at energies not specifically calculated.

For internal source problems or fixed-source problems where scatter is of
interest, the flux estimate arising from the initial source guess will be used as a
new or additional source term. Sampling from a flux requires access to radiation
producing reaction channel data, parts of the cross section data tables. Only for
reaction channels that can generate radiation types of interest need be loaded. For
example, if we are only interested in neutron transport, reaction details that can
produce neutrons will be needed (fission, n2n, nXn ...). As with other cross section
data, reaction channel data will be fixed after startup processing and can be
distributed as needed to processes.

10

Monte Carlo Mini-App for Exascale R&D
LA-UR ii-xxx

5. Computation Steps for the MC mini-App

Given the geometric configuration, its composition and source of radiation, the
computational goal of the MC mini-App is to compute the scalar, energy
dependent radiation flux in each geometrical zone. Flux is defined as number per
unit area (e.g., moles/cm2). The source may be a fixed (external) source, or it may
be material reactivity (e.g., fission in a nuclear reactor). In the latter case, iteration
will be needed to arrive at a self-consistent flux (addressed later).

The approach to calculating the flux consists of the following, separable steps.
Each of theses steps has different data needs and opportunities for parallelism.
Depending on the target hardware/software architecture, some of the steps can be
combined. It may also be possible to breakdown the steps into smaller units.

Source: Generate a random sampling of radiation histories (packets):
position (x, y, z), direction (u, v, w), energy (e), weight (wgt) and time (t).
Packets will start with unit weight. The number of histories (per iteration) is a user
input parameter;

RayTrace: Calculate the track through the geometry by ray-tracing each packet
from its origin to its exit from the geometry (or its intersection with an external
tally plane, if any). The result is a list of positive distances, trace (axis, bound),
to boundary crossings along each axis. The list is ordered for each axis.;

Segment: Determine the ordered list of zones, {g}, that the track intercepts and
the path length in each zone, {ds(g)} [cm];

Attenuate: The weight is reduced along the track, {ds(g)}, zone-by-zone,
using the mean free path [NIFP] derived from the reaction cross section(s).
Material and cross section data is needed for this step;

Tally: Accumulate the weighted path lengths, zone-by-zone (wgt X ds) [cm]
from a packet batch and its associated child batches (if any);

Spawn: The attenuation factors are used to create secondary (reaction emitted)
packets. These "child" packets (descended from their "parents") will be used to
calculate the contribution to tallies from a child batch.

Normalize: Determine flux in zones of interest (nominally all) by dividing the
net weighted path lengths by the zone volumes [cm3

].

Each of these algorithm components is addressed in more detail in the sections
that follow.

For internal sources (e.g., criticality calculations), the initial packets are
selected at random from an initial "guess" as to the flux distribution. When a new

11

Monte Carlo Mini-App for Exascale R&D
LA-UR ll-xxx

flux estimate is obtained from the initial source, it is used to generate a new source,
which is propagated to refine the flux with steps 2-6. A self consistent flux is one
where a source generated from it will result in the same flux. The number of
iterations is a user-input parameter. In the future, provisions may be developed for
estimating the (self) consistency of the flux, iteration to iteration.

For external sources (e.g., radiography or shielding calculations), the source is
user defined and the transmitted packets may need to be accumulated into an image
or dose. For these problems, the flux can either be ignored (eliminating step 5
completely and eliminating the need for knowing the element order in step 3) or
used to estimate a scattered component (e.g., noise in an image).

12

Monte Carlo Mini-App for Exascale R&D
LA-UR JJ-xxx

6. Source - Generate a Batch of Packets

The first step is to obtain a batch of initial packet descriptions. Packets will be
randomly generated in batches of independent packets to be processed together.
Statistics (convergence, variance, etc.) will be performed on the variation between
batches. This means that each batch can be considered independent with respect to
the other computational steps. See Appendix A for information on source PDFs
and sampling techniques.

Inputs: Source descriptions (spatial, energy, time);
May also need access to geometric and composition infonnation;

Parallelism: Each packet can be independently sourced;
Memory: Each packet will occupy ~80bytes.

Other data needed will vary in size, but be unchanging.

Packet data includes the packet number (pnum) , radiation type (rtype: i.e.,
neutron, photon ...), position [pos(1: 3)], direction [dir(l: 3)], energy (e), initial
weight (wo) and initial time (to) [if needed]. Direction is specified in direction
cosines with respect to the x, y, z axes. Therefore a packet consists of nine (9) real
values and two (2) integer values (pnum, rtype). Note that packets will always
be described in a Cartesian (XYZ) coordinate system, even if a non-Cartesian
geometry model is used. A packet object will be expressed as follows.

Type(packet):
pnum : packet number/index
rtype : radiation type (neutron, photon)
pos(3) : Cartesian location (xyz)
dir(3) : Cartesian direction cosines [-1,1]
e, t, wgt : energy (MeV), time (s), weight

With double precision real values, the data-size of a packet is 0(80) bytes
(10 words). As the MC capabilities are developed, other packet attributes may
become necessary. However, trade offs between storage and memory footprint can
be made by (re)computing other values when needed. One possible reduction
would be to use only two direction cosines. Because the sum of the squares of the
cosines must be unity, we could do with only two, for instance with only dir(l: 2),

dir(3) = .}1 - dir(1)2 - dir(2)2. For computational simplicity (to be shown
below), it may be better to have all three exist as part of a packet object. This can
be a computer-science design decision. For algorithmic discussions, we assume all
three direction cosines are available.

13

Monte Carlo Mini-App for Exascale R&D
LA-UR II-xxx

7. RayTrace - Determine the Boundary Crossings for Each Dimension

With a batch of packets, the next step is to calculate the intersection points with
the geometry. Only the geometry data and a packet's position and direction are
needed for each trace. A trace is a list of the distances to intersections with the
geometry boundaries. The trace from each packet is independent (actually each
axis of the trace is independent of the others), offering parallelism opportunities
needing relatively small amounts of data.

Inputs: packet(s), geometry
Parallelism: Each axis of each raytrace is independent.
Memory: A trace will be a data object consisting of approximately

L(n(i) + 1) words.
A canonical data structure is:

Type(traee):
p -> packet pointer (or object? or packet number?)
d1 (0: p. n(1))
d2 (0: p. n(2))
d3 (0: p. n(3))

A reference to the parent packet is included because its energy and initial
weight will be needed in later steps.

For Cartesian geometries, the distance algorithm is quite simple. From position
p and direction-cosine de both measured perpendicular to a plane, the general
formula for the distance d to the plane at b is given by [d = (b - p) / de]. More
complicated formulae are needed for cylindrical or spherical surfaces.

5 10 15 20 25 30 35

/
4 9 14 19 24 2~ ~4

V
V

3 8 13 18 28 33

/

k:
v

2 / 17 22 27 32

~
1 6 11 16 21 26 31

Figure 1: A sample RayTrace through a 2D, 5x7 mesh. The packet trace originates in zone I and exits the
mesh through the maximum x boundary in zone 35.

14

Monte Carlo Mini-App for Exascale R&D
LA-UR II-xxx

The resulting distance d is measured along the direction of motion, p. dir, from
the packet origin, p. pas. For instance, if the plane is perpendicular to the x-axis,
then p =- x, dc = u and b is the x-position of the plane. Negative values indicate
the intercept is behind the current position. If dc = 0, this means the path is
parallel to the plane and there is no intercept.

In array-syntax pseudo code, the calculation of all intersections of a may look
like this:

For axes i = 1,3 :

Wh d · (.) 0 t d () (geam .ci(:)-trace .p.pas (0) ere trace.p. Lr L =f=. , race . . : = ;
1 trace .p.dir (i)

Otherwise trace. d i (:) = -00;

Any non-positive value can be assigned to axes with p. dir(i) = O. This is done
to separate infinite and backwards distances from those of interest (finite and
positive). This formula gives the three intercept array components of a trace, one
for each axis. The component trace. d 1 (:) contains the distances to all of the x
bounds given by geam. Cl (:). The y and z intercept arrays are in trace. d i (:) with
i = 2 and 3, respectively.

15

Monte Carlo Mini-App for Exascale R&D
LA-VR ll-xxx

8. Segment - Determine Zone-by-zone Path Lengths

The intercepts specified in a trace are in order for each axis, but the three lists
need to be merged into a single, ordered list coupled with a list of the associated
axis indices (zones intercepted). An additional complication is that
where p. dir(a) < 0, the ordering of the distances for axis a is backwards. Note
that we can ignore axes a where p. dir(a) = 0 as all those distances will be
infmite.

Inputs: A trace object is an input to this step.
Parallelism: Each conversion of a trace to a segment is independent
Memory: A segment is an object containing ordered lists of path lengths and

intercepted zones.
Type (segment)

e=t.p.e
Wo = t.p. Wo
ns
zone(1: ns)
ds(1: ns) [can also act as s(:) temporarily]

This operation is parallelizable on traces, an extension of the parallelism on
packets in the Trace step.

Here is a pseudo-code approach to a merge-sort. First find the first and last
indices, and the step for each axis:

For axes i = 1, 3 :
step(i) = sign(p. dir(i))
first(i) = index of (min(trace. d(:) > 0))
last(i) = index of (max(trace. d i (:)))

These three triplets give the starting, ending and increment indices for each
axis. Ifp. dir(i) = 0, the first and last indices will be the same (the starting index
on that axis). This condition needs to be identified and dealt with appropriately
when settingfirst, last and step.

The first distance to intercept, s(1), will be min(trace.dl(first(l)),l = 1,3)
from which we also need to obtain the axis l on which this first intercept lies.

l = index of (min(trace. dl(first(l)),l = 1,3))

The first zone intercepted is given by segment. zone(1) = g(i,j, k) where
(i,j, k) = (first(1), first(2), first(3)) using Equation (l). This should be the
element in which the trace starts. Care must be taken to identify the first zone intersected. The

16

Monte Carlo Mini-App Jar Exascale R&D
LA-UR II-xxx

algorithm above should be correct as the zone index is calculated using the upp r bound indices in Equation 1.

However, the logic needs to be checked.

To get the next distance, the index for the axis l found for s(l) is incremented
by step(l). For example, if l=l (the x axis), i = i + step(l); j and k do not
change. Also increment the number of segments, segment. ns by one. With the
updated (i,j, k) triplet, the next distance, s(2), and the next element,
segment. zone(2), are obtained using the method described above.

This process is repeated until an axis last(:) index is exceeded. Because all of
the distances are calculated to unbounded planes, there may still be positive
distances along the other axes. But those intercepts are all out of bounds (outside
the geometry). There cannot be more than ([I n(a)]- 1) zones intercepted,
potentially many less.

....
__ ~+-----~----~~--~~~-T~~~--~~~ -- - - --~~ ,

I • _ _ _ __ - .. ~---L...-I--____L... ____ ---4----I.... __L... ____ ---L __ ..I.----'-__ ---I __ --tI- __ _ _____ •

7 12 23

Figure 2: Segment example in a 5x7 mesh. The Segment step merges the components of a Trace. The trace
from Figure 1 has seven positive x intercepts and five positive y intercepts, the last of which is off the
grid. There are eleven zones intercepted, in this order: 9 E (1,2,7,12,17,18,23,28,29,34, 35).
The intercepts from the x and y axes are shown in red and blue, respectively, demonstrating the
merging of the trace components.

Adding a distance to an image plane is relatively trivial. Only the position and
orientation of the plane are needed. Note that an image plane may be arbitrarily
oriented with respect to the geometry.

One last step is to convert the distance list, s(:), into zone-lengths,
segment. ds(:), thusly:

segment. ds(l) = s(l);
segment. ds(l) = s(l) - s(l - 1), for l E {2, segment. ns}.

17

Monte Carlo Mini-App for Exascale R&D
LA-UR ll-xxx

9. Attenuate - Estimate Bulk Effect on Intensity

In addition to a segment object s, this step requires information about the
materials and cross sections to calculate the mean free path A(Z, E) for a packet at
energy, E = segment.E, in zones Z E {s.zone(:)}. The calculation of mean free
paths was defmed in Section 4.4. For any segment object s, the energy is constant,
simplifying the cross section requirements considerably.

Inputs: A segment object; materiaVenergy dependent mean free path.

Parallelism: On segments (packets), potentially on zones

Memory:

The attenuate step converts the segment list from length units [cm] to mean
free-path units to allow for simple, cumulative attenuation along the trace.

Recall that attenuation of intensity (weight in our context) from passing through
a distance ds in a material with mean free path A is given by:

wgt(ds) = s. Wo x e-ds/t..

By converting lengths ds into units of mean-free-path, df = ds / A, the equation
simplifies to this:

wgt(f) = s. Wo x e-d€

With our segment list converted to mean free paths, attenuation through
multiple zones is given by:

wgt(i) = s. Wo x e-Id€U) for j < i, or

i-I

wgt(i) = s. Wo x e-€Ci) for f(i) = I dfU)

j=l

This is the weight of the path segment in the lh zone intercepted. Note that
wgt(l) = s. Wo; that is, the weight in the zone of origin is the original
(un-attenuated) weight.

18

Monte Carlo Mini-App for Exascale R&D
LA-UR Ii-xxx

10. Tally - Accumulating Results

For each batch of packets (parent or child), tallies represent the accumulation of
some quantity as an estimate of a desired attribute of the entire system. The
accumulation can be over zones (a flux tally) or on an image plane (image tally).
This section discusses the similarity and differences between the two tally types.

10.1.1 Flux Tally

A (scalar) flux tally can be used to estimate the radiation flux as a function of
energy in the mesh. The radiation flux (units of [cm-2]) is a measure of the
intensity of radiation as a function of energy, zone by zone.

The basic dimensionless flux tally is simply the accumulation of the mean free
path lengths, L1RE(i) = (i) - RE(i - 1), appropriately attenuated, traveled in each
zone.

cp(z(i), E) = I (L1RE(i) x e-£ECi-l))

Conversion to a radiation flux is done by multiplying by the mean free path,
A(Z, E), and dividing by the zonal volume, Vol(z).

A(Z, E) x cp(z, E)
~(z, E) = Vol(z)

Other tlux-based tally types can be estimated by adding appropriate factors in
the flux summation. For instance, an energy flux (a single number per zone) could
be obtained by multiplying each contribution by the packet energy. Similarly, an
energy deposition tally could be made by applying a (modified) material stopping
power to each contribution.

10.1 .2 Image Tally
It is also possible to accumulate image tallies from the radiation packets
(attenuated) that are transmitted through the geometry. This work has not yet been
started

19

Monte Carlo Mini-App for Exascale R&D
LA-UR ii-xxx

11. Spawn - Creating Child Packets

With the calculated list of attenuation lengths, f(i), found above, we can
generate randomly sample secondaries (child packets) emitted from reactions of
the parent packet with the materials in the geometry. These packets will be used to
calculate additional contributions to tally estimates. In a radiography calculation,
for example, the (first generation) "parent" batch contributions represent a direct
image. Child packet batches will represent a scatter contribution to calculated
Images.

A reaction distance in mean free paths can be sampled using the formula
dt = -In[~~rand) where a random value, rand E {O,l} is used. Note that this is
always a positive value.

If we sample multiple steps accumulating the random strides until we exceed
the maximum length (in mean free paths) along a trace, we obtain the number child
packets to generate and enough information to determine their initial locations.

I I I

f (k) = f (k - 1) + [-In(rand)] for k E {I, n E: f (n) < f max }

r I I
i l"

12 ! I ~ :'2:

28 ' i
Figure 3: Secondaries Example. In this example continued from Figure 2, two child packets are created in

zones 12 and 28, respectively. Their origins will lie on the original track. The energy, direction and
weight will be sampled lIsing reaction kinematics for the respective materials using the original packet
energy and direction as input.

The child locations found are given in cumulative mean free paths. These
values are used to identify the zones in which the reactions occur and are also
converted back into physical distances (from the parent's origin) to establish the
secondary origins. A child packet is created in the nth zone of a segment,

I

s. zone(n), where fen - 1) < f < fen). The physical distances from the parent's
origin (measured along the parent's direction) to the child packet origin is given
by:

a' (i) = '<-(z(n), E) x (i CO - t(n)) + (%, [.<-(z(j), E) x t(j)])

The new origins (as points) are obtained from the distances d'(:) and the parent
data, Po.

20

Monte Carlo Mini-App for Exascale R&D
LA-UR 11-xxx

pi (:). pOS = PO' pOS + PO' dir X d' (:)
The direction, energy and final weight of each child will be randomly sampled

using reaction kinematics defined by the cross sections J. The colliding weight is
the parent weight, Po. wgt, attenuated by the distance to the collision.

pi (:). wgt = Po. wgt x e-i (:)

Reaction kinematics can increase or decrease a child packet's weight. For
example, if the collision is a capture (absorption), the kinematic weight is zero and
we can discard the child. But if the collision is an (n, 2n) reaction (one neutron in,
two out), the kinematic weight is two. In this case, we can either generate two child
packets each of the colliding weight or one child of twice the colliding weight.

After creation, a batch of these child packets (all arising from a parent batch)
will be processed as its own "batch" with results being added to appropriate parent
batch tallies. Child packets are processed through the same computational as their
parents: RayTrace, Segment, Attenuate, Spawn (if more generations are needed or
requested) and Tally. The Normalize step can be deferred until all
required/requested generation batches are completed.

It is possible to spawn multiple generations (parent -> child -> grandchild ...)
and accumulate the results. For now, the number of levels will be taken as zero
(no children) or one (one generation) with an option for more generations as a
runtime parameter.

I See Appendix B for consideration of Center of Momentum [CM] corrections to reaction kinematics

21

Monte Carlo Mini-App for Exascale R&D
LA-UR 11-=

Appendix A: Source Distributions and Sampling

Generation of initial radiation packets requires the provIsIOn of probability
distribution functions (PDFs) and sampling techniques to be used with them. This
appendix describes some common source distributions, simple descriptions for
them and methods for randomly sampling from them.

Source descriptions may include intensity (weight), location, direction, energy
and perhaps time. The radiation type of a source must also be known and may
include more than one radiation type. For a single radiation type, the source can
have up to nine (9) independent variables - a 9D phase space. It is possible for the
PDFs to be inseparable functions of all of these variables, however, in practice, the
function is separable (or approximately separable) into simple functional forms of
the different variables.

The general form for sampling a random value (x) from a PDF described by a
function [(x) is

fX [(c)dc
Cmin

E = ----=';.:.:,;,,:.,.---
fCmax [(c)dc

Cmm

where E E (0,1]' For many analytic PDFs, a closed form for x can be derived.
More complicated forms may require a rejection-based sampling scheme.
Examples of both for sampling a direction randomly in 4n are given in
Appendix B.

For the purposes of this application, energy, weight and time will be considered
as independent (uncorrelated) variables in the phase space. PDFs for these
variables wil1 be supported as piecewise-constant (histogram), piecewise-linear and
polynomial forms.

Location will be considered to be independent of direction in most cases. Note
that this is an oversimplification for many applications, but will suffice for the
purposes of this mini-App. Only for uniform spherical sources and planar sources
coupled with non-isotropic directional PDFs will a correlation be supported. In
these cases, the direction sampled will be with respect to [w.r.t.] the radial location
vector (for spherical volumes) and w.r.t. the surface normal vector (for surface
sources). Hence, in those cases, a rotation of the sampled direction is required to
convert it to the default Cartesian system.

Location: Volume, surface and point distributions will be supported. Point
sources are obvious. For a single point, each packed will originate at that point. For
multiple points, each point will be given a probability. A packet's origin will be
chosen randomly from the list using the probabilities.

22

Monte Carlo Mini-App for Exascale R&D
LA-UR If-xxx

Surface sources will be supported from planes and spheres.

Volume sources that vary in Cartesian location (x,y,z) or radius (R) will be
permitted with polynomial forms. The most basic form is a uniform distribution
within a spherical or parallelepiped volume.

Uniform Parallelepiped: Sampling a location in a uniform parallelepiped is
straightforward. A position along each axis is sample uniformly within the
limits along that axis, i.e., x = Xmin + £ X (xmax - Xmin) for £ E (0,1]' If
the parallelepiped is not aligned with the default Cartesian coordinate
system, the simplest approach is to sample as if it is aligned and apply the
necessary, fixed rotation.

Uniform Sphere: For a uniform spherical distribution of radius Rmax , a radius is
sampled using the cube-root of one random number £ E (0,1]:

r = R x £1/3 max

This form is obtained by substituting f(c)dc = r 2 dr into the general form
given above with radial limits of [0, Rmax]. The orientation within the
sphere is calculated using the methods described in Appendix B for choosing

I

a random isotropic direction in 4n, (u, v, w). For this purpose, the result is
equivalent to a random rotation with respect to the default z-axis.
Multiplying a random rotation by a random radius r gives a random

I

Cartesian position: p. pos(1: 3) = r x (u, v, w).

Direction: Direction distributions can be isotropic or angularly biased. The
forms this mini-App will support are isotropic and cylindrically-symmetric
anisotropic.

Isotropic: See Appendix B for methods to sample from a fully isotropic
distribution.

Anisotropic: A cylindrically symmetric anisotropic distribution is one that
varies as a function of the angle from a specified symmetry axis. The
symmetry axis may be arbitrarily defined by a constant unit direction or may
be correlated to a chosen location. See the discussion above for how this
axis is correlated to some location PDFs. Azimuthally around the symmetry
axis, the distribution is assumed to be uniform, i. e., the azimuthal angle is a
random value ~ E (O,2n]. Axial distributions will be supported as functions
of the cosine of the axial angle, e.g., f(c)dc = cos(8)d8, in the general
form. Limits on the range of 8 will also be permitted, specifically being
helpful for radiography point sources. One commonly used set of functions
are the Legendre polynomials [P nJ. Note that the isotropic distribution is a

23

Monte Carlo Mini-App for Exascale R&D
LA-UR II-xxx

special case of this with fCc) = 1 [Po]. There IS a recurSIve fonn for
Legendre polynomials:

Po = 1
PI = x

(2n + l)xPn (x) - nPn - 1 (x)
Pn+1(x) = n+ 1

24

Monte Carlo Mini-App for Exascale R&D
LA-UR 11-xxx

Appendix B: Sampling a Random Direction in 41t

Sampling a direction randomly in 3-space can be equated to uniformly sampling
locations on a unit sphere. Such locations can be specified by two angles, an axial
angle in the range [0, rr]; and an azimuthal angle in the range [O,2rr]. The
azimuthal angle is unifonnly distributed in angle. However, the axial angle is
uniformly distributed in the cosine of the angle.

There are direct and rejection approaches to sampling random values that meet
these conditions.

Direct Technique:
The z direction cosine, W, is randomly distributed between (-1, 1], so it can

be chosen simply with one random number, £ E (0,1]:

W = 2£ - 1
The transverse direction cosine, call it f3, is given by:

f3 =)1 - w 2

Note that f3 = ..Juv + v2 as well.

The azimuthal angle is randomly distributed between (O,2rr]. For such a
random angle, £ E (O,2rrJ, the direction cosines for x and yare given by

u = f3 X cos(£)

V = f3 x sin[!~£)

2D Rejection Technique2
:

It may be faster to reject some values than calculate trig functions. The
azimuthal direction cosines, u and v, can be sampled using a rejection scheme.

With wand f3 calculated as above, choose two random values, a and b, in
the range (-1, 1].

• If (a 2 + b 2) > 1, reject the pair and choose again. (~21.5% likelihood
of rejection)

• When accepted values are found (~78.5% likelihood for any pair), u and
v are given by:

2 Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, L~ & Koblinger, CRC Press, 1990

25

Monte Carlo Mini-App for Exascale R&D
LA-UR 11-xxx

Appendix C: Center of Momentum Corrections for Kinematics

Cross section tables describe the kinematics in the collision's center-of
momentum [CM] frame of reference. If the material is taken to be stationary (the
lab frame of reference), the collision CM is determined by the energy and direction
of the parent and the mass of the isotope with which it collides. To sample the
cross section tables in the CM frame, we need to find the parent packet energy in
the CM. For this MC mini-App, Galilean transformations will be used for
simplicity.3

In the CM, the packet momentum (a vector quantity) is equal to and opposite
the nucleus' momentum. Starting with momentum formula p = mv, energy

formula E = P'P, and an initial nucleus velocity of zero, we solve for a change in
2m

speed !1v E: ffip (Ivp I - !1v) = mn!1v, yielding !1v = (mp Iv
p I r Substitution into

mp+mn

the energy formula gives the collision energy in the CM, Ep'.

E ' = ~m (v _ ffip Ivp I)2 = E (ffin)2 < E
p 2 p p (mp+mn) p mp+mn - p

This reduced projectile energy is used to sample the cross section kinematics to , ,
create the CM-based child packets, Pc' The resulting CM-energy, Ec , and CM-
direction, p~. dir, are transformed back to the laboratory frame. These
transformations are accomplished by adding the vector momentum component,

mc!1v X Po. dir to the vector CM-momentum of the child)2mcE'c x Pc'. dir.
This vector sum gives the child's lab-frame momentum, from which its direction
and energy can be derived.

3 Special relativity corrections to energy and momentum should to be considered in CM transformations to ensure
the physics is accurately represented. Further adjustment to the CM for random nuclear motion in "hot" bulk
material may also be important.

26

