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Developing a Monte Carlo mini-App 
for Exascale Co-Design 

Larry J. Cox, Ryan C. Marcus 
X-Computational Physics Division 
Los Alamos National Laboratory 

Abstract 
Exascale computing research and development will need an 

understanding of the intended computational applications by the 
full spectrum of researchers. Co-design research teams will 
require representative applications to guide their research. 

One of the important applications is Monte Carlo Radiation 
Transport, such as that supported by the ASC software package 
MCNP. This paper presents a Monte Carlo "mini-App" for 
Exascale R&D that encompasses many of the necessary 
algorithmic components of Monte Carlo transport. The 
physics in kept intentionally simple to avoid export control 
concerns. However, an effort was also made to make it 
representative of the "real" physics used in codes such as 
MCNP. 

The primary goal for this MC mini-App is to clearly define 
the computational requirements and constraints while leaving 
open as much of the computer science as possible. 

A secondary goal of this effort is to develop one or more 
sample implementations of the App that may help to advance 
Exascale R&D. 

As the Exascale R&D progresses, this MC mini-App will 
provide a framework to include more realistic physics and to 
explore emerging hardware/software paradigms. 
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1. Introduction 

Monte Carlo radiation transport methods are widely-used for studying the 
interaction of radiation with matter in almost every scientific and engineering 
discipline. Specific areas of application include, but are not limited to, radiation 
protection and dosimetry, radiation shielding, radiography, medical physics, 
nuclear criticality safety, detector design and analysis, nuclear oil well logging, 
isotope production, accelerator target design, fission and fusion reactor design, 
decontamination and decommissioning of nuclear facilities These methods are 
essential to many NNSA missions. 

One example of a Monte Carlo software package is the family of codes referred 
to as MCNP. The latest version of this family, MCNP6, is a general-purpose, 
Monte Carlo N-£.article code that can be used for neutron, photon, electron, ion 
and exotic particle transport. MCNP6 is a merging of the MCNP5 and MCNPX 
efforts into a unified, multi-purpose code base. There are thousands of users in 
many nations, in many industries and at many universities around the world. 

The goal of this effort is to develop a neutral-particle (n,y) Monte Carlo 
radiation transport package tailored to solve one or more specific problems of 
interest and capable of running on most or all emerging hardware/software 
paradigms. Possible domains of interest include, but are not limited to, criticality, 
radiography, shielding. For now, criticality will be adopted as the canonical 
scientific application. 
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2. Project Objectives 

Given a geometric configuration, its composition and a source of radiation, the 
computational goal of the Me mini-App is to compute the scalar, energy
dependent radiation flux in each geometrical zone. 

Flux is defined as number per unit area (e.g., mol/cm2
). The radiation source 

may be a fixed (external) source, or it may be material reactivity (e.g., fission in a 
nuclear reactor). In the later case, iteration will be needed to arrive at a self
consistent flux (addressed later). 

The primary goal will be to clearly define the computational requirements for 
the mini-App in terms that can be used to create multiple implementations. 

A secondary goal will be to create one or more sample implementations. 
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3. Assumptions and Definitions 

Random Number Generator: A parallel-capable random number kernel will 
needed that provides a predictable, independent random number sequence to an 
arbitrary number of processes. The methodes) used in MCNP6 
(src/mcnp random.F90) will form the basis for this functionality and will be recast 
as needed into other languages. 

(Initial) Source Specification: A description of a radiation source is a required 
component of a problem definition. This may be a user-defined external source 
(e.g., for radiography), or an initial guess at an internal source (e.g., for criticality). 
This data may need some processing, but will remain fixed after startup. It is 
needed only in computational step 1 (see Section 4). 

Geometry: The geometry will be a "product" mesh (e.g., the geometry 
construct allowed in the LNK3DNT format). Each axis is specified as a list of 
intercepts. The geometry is the I12/3D outer product of the axis vectors. Cartesian 
(XYZ) will be the initial geometry addressed. However, extension to Cylindrical 
(RZ, RZ8) and spherical (R) will be kept in mind during development. Distances 
will be measured in centimeters (cm). Angles, when implemented, will be 
expressed in revolutions (1 rev = 2n radians = 360°). 

Composition: The materials present in the geometry can be separately defined 
and stored. Since composition information is not needed at the same time 
geometric data is needed, keeping them separate offers more flexibility in memory 
placement and access . A set of composite mixtures (materials) will be defined 
based on their isotopics (specified in atom fractions). The isotopics will remain 
fixed during the calculation. 

Cross Section Data: To calculate the interaction of the radiation flux with the 
geometry and its materials, isotopic cross section data is needed. Because the 
material mixtures will not change, cross section data can be loaded and partially 
preprocessed at startup. The nature of the radiation sources (radiation type(s), 
energy range, reaction channels of interest, etc.) will affect which cross section 
data will be needed. A computational kernel for calculating mean free path as a 
function of radiation type, energy and material will be needed. For creation of 
secondary emissions (child packets), double-differential cross section data may be 
required for some isotopes and reactions channels. 

Type Defs: The following format is used to define data "types." 
Type(obj): 

camp 
comp2 
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Type References: The type-component notation obi. comp will be used to 
represent a reference to a component of a derived-type instance. For example, 
p. pos(l) would be the x coordinate of a packet (see Section 6). 
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4. Startup 

A significant amount of one-time preprocessing calculation can be done at 
startup. The following sections address some of the data that will remain fixed 
during the Monte Carlo calculation after initialization. 

4.1 Source Description 

Radiation will be described in packets, each representing an amount of a 
specific radiation type at a single energy. The intensity of a radiation packet will 
be represented by a weight that can change during the calculation. 

Volume, plane and point sources may be required, depending on the type of 
calculation. Probability distributions in energy, position, direction and intensity 
may be needed. These PDFs can be loaded and preprocessed at startup. See 
Appendix A for more information on PDF definition and sampling. 

4.2 Geometry Description 

To define a Cartesian geometry, the following data is required: 
Type(geom): 

n(l: 3) 
Cl (0: n(1)) 
cz(0:n(2)) 
C3 (0: n(3)) 
origin(1: 3) 
axis(1: 2,1: 3) 

: The number of segments along each axis 
: The arrays of bounds for axis 1 
: The arrays of bounds for axis 2 
: The arrays of bounds for axis 3 
: [optional] 
: [optional] 

The origin and axis components are needed if the geometry is not aligned with the 
default coordinate system (up to 9 real values needed). They are used to specify an 
offset and/or a rotation. 

Even for very large mesh geometries, one can see that the data needed to define 
the geometry is relatively small. For example, a billion zones (10003

) would only 
require 3012 real values (the bounds and orientation) and 3 integer values (the 
segment counts). The number of zones in a problem is the product of the segment 
counts along each dimension, n zone = n n(: ). 

The geometric zones will be indexed as a one dimension array 9 E (1: nzone ). 

With (i,j, k) E (1: n(l), 1: n(2), 1: n(3)) being the coordinate indices into the 2D 
bounds array, 9 is given by: 

g(i,j, k) = k + n(3) x [Ci - 1) + n(2) x (i - 1)] (1) 

If any of the indices are out of bounds, then we define 9 = 0, indicating that the 
location is not in the geometry. 
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The LNK3DNT file format stores the necessary counts and dimensions. It does 
not store orientation information (origin, axis). These quantities will need to be 
separate, user-defined inputs, if supported. 
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4.3 Material Composition Data 

The LNIGDNT format also stores partial mass densities (glcc) for each 
material in a zone. However, it does not store isotopics for the materials. A 
possible derived type for a material is this: 

Type(material): 
niso : number of isotopes in the material 
tbl(l: niso) : cross section table identifiers 
za(l: niso) : ZA numbers for each isotope 
at(l: niso) : atom fractions for each isotope 
stp(l: nE) : stopping power (See Section 4.4) 

Isotopes are specified by za(i) = 1000 x Z(i) + A(i) where Z(i) is the number of 
protons and A (i) is the total number of nucleons (protons and neutrons) for 
isotope i. For example, the ZA for 238 U is 92238. The tbl(:) component is an 
alphanumeric string that identifies the cross section table (or model) to use for each 
isotope. The atom fraction component, at(:), is normalized so that L at = 1. 
Non-normalized atom fractions in the input will be permitted, setting a 
normalization requirement at startup. This will allow the specification of water as 
2 hydrogen (za = 1001) and I oxygen (za = 8016). 

Each geometric zone may have zero or more materials each with a specified 
partial density. A derived type could be defined that contains the number of 
materials, the material indices and the material partial densities for a single zone. 

Type(zone): 

rLmat 
m(l: nmat ) 

p(l: rLmat) 

: number of materials homogenized in the zone 
: indices into the materials array 
: partial mass densities (g/cc) 

In this form, the composition data for a single zone can be kept nominally 
contiguous and perhaps more easily copied to where it is needed. 

Voids (vacuum zones) are indicated by having no materials, z. nmat = O. The 
material and density information for each zone is stored in the LNK3DNT file 
format. The total density of a zone is the direct sum of the partial densities. The 
mass is that sum times the volume of the zone. Total density, mass and volume are 
values that can be computed as needed. 

Other data-layout possibilities should also be considered. One example would 
be to assign the same number of material slots per zone (the problem maximum), 
which would make the array components uniform in size across all zones and 
eliminate the need to store a variable number of materials per zone. 
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4.4 Material Cross Section Data 

The cross sections for radiation interaction with matter are dependent on the 
radiation type and energy, the isotopes present. One use of cross sections will be in 
calculating the mean free path of a radiation packet. This value can also be 
interpreted as an attenuation length. For each radiation type and isotope, there is a 
microscopic total cross section. These cross sections are isotope and radiation type 
specific and are a function of (radiation) energy. Other factors such as material 
temperature can affect cross section values. 

The mean free path is a distance over which we expect to have e-1 - 36.7% 
attenuation (reduction in intensity) of a radiation source. The weight (representing 
the radiation intensity) of a radiation packet p traversing a distance s in a material 
with attenuation length A, would be wgt(s) = p. Wo x e-sjJ... The average distance 
before any sort of reaction event, the mean-free-path, is this attenuation length by 
evaluating the following: 

J s x e-sjJ..ds 
(s) = J e-sjJ..ds = A 

Units analysis can illuminate the approach to calculating mean free paths. 
Interaction cross sections (5 are in area units called barns (l barn = 10-
24 cm2jnucleus). Mass densities p are in units of g/cm3

. Isotopic densities can be 
expressed in units of Avogadro's number (Av = 6.022 x 1023 nuclei/mol). 
Isotope weights are in terms of atomic mass units, AMU, which are equivalent to 
mass per mol (g/mol). The product of these units is ((5 x Av x P -7- AMU) = 
(em~jnucleus)(nuclei/mel)(g/cm~(met/g) = [cm- I

] or inverse distance. Summed 
over isotopes, this gives the reciprocal of the mean free path, A. In this form, all 
terms except Av are isotope specific. 

Since densities can vary by zone, it is helpful to pull out the overall material 
density and replace it in the summation with isotopic atom fractions (a 
dimensionless quantity). This gives what can be called a stopping power [cm2/g] 
for each material: 

_ ~ ((5T (i, E) x m. a[(i)) 
m. stp(E) - Av x ~ AMU(i) 

I 

Where the sum is over the isotopes, i, of material m. Note that microscopic total 
cross sections, (5T (i, E), and hence the stopping powers, are dependent on the 
radiation type and energy, as well as being isotope specific. 
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The mean free path, A [in cm], for the mixture of materials in a zone, Z, is 
obtained by summing the stopping powers over the materials, m(j), j E {l, nmat }, 

in the zone. 

A(Z, E) = If (z.p(j) x z. m(j). stp(E)) r 
For initial implementations, we may want to use discrete energy ranges 

("energy groups") instead of continuous energies. Cross sections specified as 
constant over an energy range are called multi-group cross sections and represent a 
weighted average over the energy range for the group. The weighting is done with 
respect to a specified energy distribution, <peE). 

_ ftlE(g) <P(E)O"T(E)dE 
O"T(g) = 

ftlE(g) <p(E)dE 

This fonnula gives the energy-weighted, average total microscopic cross 
section, O"T(g), over the energy group 9 where LlE(g) = (Eg -Eg _ 1 ). Again, note 
that these values are isotope and radiation type specific. With the multi-group 
approach, stopping powers can be calculated in advance for each material and 
energy group. If a continuous energy approach is adopted, some level of pre
calculation may be possible coupled with an interpolation scheme for obtaining 
values at energies not specifically calculated. 

For internal source problems or fixed-source problems where scatter is of 
interest, the flux estimate arising from the initial source guess will be used as a 
new or additional source term. Sampling from a flux requires access to radiation 
producing reaction channel data, parts of the cross section data tables. Only for 
reaction channels that can generate radiation types of interest need be loaded. For 
example, if we are only interested in neutron transport, reaction details that can 
produce neutrons will be needed (fission, n2n, nXn ... ). As with other cross section 
data, reaction channel data will be fixed after startup processing and can be 
distributed as needed to processes. 

10 



Monte Carlo Mini-App for Exascale R&D 
LA-UR ii-xxx 

5. Computation Steps for the MC mini-App 

Given the geometric configuration, its composition and source of radiation, the 
computational goal of the MC mini-App is to compute the scalar, energy
dependent radiation flux in each geometrical zone. Flux is defined as number per 
unit area (e.g., moles/cm2). The source may be a fixed (external) source, or it may 
be material reactivity (e.g., fission in a nuclear reactor). In the latter case, iteration 
will be needed to arrive at a self-consistent flux (addressed later). 

The approach to calculating the flux consists of the following, separable steps. 
Each of theses steps has different data needs and opportunities for parallelism. 
Depending on the target hardware/software architecture, some of the steps can be 
combined. It may also be possible to breakdown the steps into smaller units. 

Source: Generate a random sampling of radiation histories (packets): 
position (x, y, z), direction (u, v, w), energy (e), weight (wgt) and time (t). 
Packets will start with unit weight. The number of histories (per iteration) is a user
input parameter; 

RayTrace: Calculate the track through the geometry by ray-tracing each packet 
from its origin to its exit from the geometry (or its intersection with an external 
tally plane, if any). The result is a list of positive distances, trace (axis, bound), 
to boundary crossings along each axis. The list is ordered for each axis.; 

Segment: Determine the ordered list of zones, {g}, that the track intercepts and 
the path length in each zone, {ds(g)} [cm]; 

Attenuate: The weight is reduced along the track, {ds(g)}, zone-by-zone, 
using the mean free path [NIFP] derived from the reaction cross section(s). 
Material and cross section data is needed for this step; 

Tally: Accumulate the weighted path lengths, zone-by-zone (wgt X ds) [cm] 
from a packet batch and its associated child batches (if any); 

Spawn: The attenuation factors are used to create secondary (reaction emitted) 
packets. These "child" packets (descended from their "parents") will be used to 
calculate the contribution to tallies from a child batch. 

Normalize: Determine flux in zones of interest (nominally all) by dividing the 
net weighted path lengths by the zone volumes [cm3

]. 

Each of these algorithm components is addressed in more detail in the sections 
that follow. 

For internal sources (e.g., criticality calculations), the initial packets are 
selected at random from an initial "guess" as to the flux distribution. When a new 
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flux estimate is obtained from the initial source, it is used to generate a new source, 
which is propagated to refine the flux with steps 2-6. A self consistent flux is one 
where a source generated from it will result in the same flux. The number of 
iterations is a user-input parameter. In the future, provisions may be developed for 
estimating the (self) consistency of the flux, iteration to iteration. 

For external sources (e.g., radiography or shielding calculations), the source is 
user defined and the transmitted packets may need to be accumulated into an image 
or dose. For these problems, the flux can either be ignored (eliminating step 5 
completely and eliminating the need for knowing the element order in step 3) or 
used to estimate a scattered component (e.g., noise in an image). 
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6. Source - Generate a Batch of Packets 

The first step is to obtain a batch of initial packet descriptions. Packets will be 
randomly generated in batches of independent packets to be processed together. 
Statistics (convergence, variance, etc.) will be performed on the variation between 
batches. This means that each batch can be considered independent with respect to 
the other computational steps. See Appendix A for information on source PDFs 
and sampling techniques. 

Inputs: Source descriptions (spatial, energy, time); 
May also need access to geometric and composition infonnation; 

Parallelism: Each packet can be independently sourced; 
Memory: Each packet will occupy ~80bytes. 

Other data needed will vary in size, but be unchanging. 

Packet data includes the packet number (pnum) , radiation type (rtype: i.e., 
neutron, photon ... ), position [pos(1: 3)], direction [dir(l: 3)], energy (e), initial 
weight (wo) and initial time (to) [if needed]. Direction is specified in direction 
cosines with respect to the x, y, z axes. Therefore a packet consists of nine (9) real 
values and two (2) integer values (pnum, rtype). Note that packets will always 
be described in a Cartesian (XYZ) coordinate system, even if a non-Cartesian 
geometry model is used. A packet object will be expressed as follows. 

Type(packet): 
pnum : packet number/index 
rtype : radiation type (neutron, photon) 
pos(3) : Cartesian location (xyz) 
dir(3) : Cartesian direction cosines [-1,1] 
e, t, wgt : energy (MeV), time (s), weight 

With double precision real values, the data-size of a packet is 0(80) bytes 
(10 words). As the MC capabilities are developed, other packet attributes may 
become necessary. However, trade offs between storage and memory footprint can 
be made by (re)computing other values when needed. One possible reduction 
would be to use only two direction cosines. Because the sum of the squares of the 
cosines must be unity, we could do with only two, for instance with only dir(l: 2), 

dir(3) = .}1 - dir(1)2 - dir(2)2. For computational simplicity (to be shown 
below), it may be better to have all three exist as part of a packet object. This can 
be a computer-science design decision. For algorithmic discussions, we assume all 
three direction cosines are available. 
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7. RayTrace - Determine the Boundary Crossings for Each Dimension 

With a batch of packets, the next step is to calculate the intersection points with 
the geometry. Only the geometry data and a packet's position and direction are 
needed for each trace. A trace is a list of the distances to intersections with the 
geometry boundaries. The trace from each packet is independent (actually each 
axis of the trace is independent of the others), offering parallelism opportunities 
needing relatively small amounts of data. 

Inputs: packet(s), geometry 
Parallelism: Each axis of each raytrace is independent. 
Memory: A trace will be a data object consisting of approximately 

L(n(i) + 1) words. 
A canonical data structure is: 

Type(traee): 
p -> packet pointer (or object? or packet number?) 
d1 (0: p. n(1)) 
d2 (0: p. n(2)) 
d3 (0: p. n(3)) 

A reference to the parent packet is included because its energy and initial 
weight will be needed in later steps. 

For Cartesian geometries, the distance algorithm is quite simple. From position 
p and direction-cosine de both measured perpendicular to a plane, the general 
formula for the distance d to the plane at b is given by [d = (b - p) / de]. More 
complicated formulae are needed for cylindrical or spherical surfaces. 

5 10 15 20 25 30 35 

/ 
4 9 14 19 24 2~ ~4 

V 
V 

3 8 13 18 28 33 

/ 

k: 
v 

2 / 17 22 27 32 

~ 
1 6 11 16 21 26 31 

Figure 1: A sample RayTrace through a 2D, 5x7 mesh. The packet trace originates in zone I and exits the 
mesh through the maximum x boundary in zone 35. 
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The resulting distance d is measured along the direction of motion, p. dir, from 
the packet origin, p. pas. For instance, if the plane is perpendicular to the x-axis, 
then p =- x, dc = u and b is the x-position of the plane. Negative values indicate 
the intercept is behind the current position. If dc = 0, this means the path is 
parallel to the plane and there is no intercept. 

In array-syntax pseudo code, the calculation of all intersections of a may look 
like this: 

For axes i = 1,3 : 

Wh d · (.) 0 t d () (geam .ci(:)-trace .p.pas (0) ere trace.p. Lr L =f=. , race . . : = ; 
1 trace .p.dir (i) 

Otherwise trace. d i (:) = -00; 

Any non-positive value can be assigned to axes with p. dir(i) = O. This is done 
to separate infinite and backwards distances from those of interest (finite and 
positive). This formula gives the three intercept array components of a trace, one 
for each axis. The component trace. d 1 (:) contains the distances to all of the x 
bounds given by geam. Cl (:). The y and z intercept arrays are in trace. d i (:) with 
i = 2 and 3, respectively. 
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8. Segment - Determine Zone-by-zone Path Lengths 

The intercepts specified in a trace are in order for each axis, but the three lists 
need to be merged into a single, ordered list coupled with a list of the associated 
axis indices (zones intercepted). An additional complication is that 
where p. dir(a) < 0, the ordering of the distances for axis a is backwards. Note 
that we can ignore axes a where p. dir(a) = 0 as all those distances will be 
infmite. 

Inputs: A trace object is an input to this step. 
Parallelism: Each conversion of a trace to a segment is independent 
Memory: A segment is an object containing ordered lists of path lengths and 

intercepted zones. 
Type (segment) 

e=t.p.e 
Wo = t.p. Wo 
ns 
zone(1: ns) 
ds(1: ns) [can also act as s(:) temporarily] 

This operation is parallelizable on traces, an extension of the parallelism on 
packets in the Trace step. 

Here is a pseudo-code approach to a merge-sort. First find the first and last 
indices, and the step for each axis: 

For axes i = 1, 3 : 
step(i) = sign(p. dir(i)) 
first(i) = index of (min( trace. d(:) > 0) ) 
last(i) = index of ( max( trace. d i (: ) ) ) 

These three triplets give the starting, ending and increment indices for each 
axis. Ifp. dir(i) = 0, the first and last indices will be the same (the starting index 
on that axis). This condition needs to be identified and dealt with appropriately 
when settingfirst, last and step. 

The first distance to intercept, s(1), will be min(trace.dl(first(l)),l = 1,3) 
from which we also need to obtain the axis l on which this first intercept lies. 

l = index of (min(trace. dl(first(l)),l = 1,3)) 

The first zone intercepted is given by segment. zone(1) = g(i,j, k) where 
(i,j, k) = (first(1), first(2), first(3)) using Equation (l). This should be the 
element in which the trace starts. Care must be taken to identify the first zone intersected. The 
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algorithm above should be correct as the zone index is calculated using the upp r bound indices in Equation 1. 

However, the logic needs to be checked. 

To get the next distance, the index for the axis l found for s(l) is incremented 
by step(l). For example, if l=l (the x axis), i = i + step(l); j and k do not 
change. Also increment the number of segments, segment. ns by one. With the 
updated (i,j, k) triplet, the next distance, s(2), and the next element, 
segment. zone(2), are obtained using the method described above. 

This process is repeated until an axis last(:) index is exceeded. Because all of 
the distances are calculated to unbounded planes, there may still be positive 
distances along the other axes. But those intercepts are all out of bounds (outside 
the geometry). There cannot be more than ([I n(a)]- 1) zones intercepted, 
potentially many less. 

.... .... 
__ ~+-----~----~~--~~~-T~~~--~~~ -- - - --~~ , 

I • _ .... _ _ __ - .. ~---L...-I--____ .....L... ____ ---4----I.... __ .....L... ____ ---L __ ..I.----'-__ ---I __ --tI- __ _ _____ • 

7 12 23 

Figure 2: Segment example in a 5x7 mesh. The Segment step merges the components of a Trace. The trace 
from Figure 1 has seven positive x intercepts and five positive y intercepts, the last of which is off the 
grid. There are eleven zones intercepted, in this order: 9 E (1,2,7,12,17,18,23,28,29,34, 35). 
The intercepts from the x and y axes are shown in red and blue, respectively, demonstrating the 
merging of the trace components. 

Adding a distance to an image plane is relatively trivial. Only the position and 
orientation of the plane are needed. Note that an image plane may be arbitrarily 
oriented with respect to the geometry. 

One last step is to convert the distance list, s(:), into zone-lengths, 
segment. ds(:), thusly: 

segment. ds(l) = s(l); 
segment. ds(l) = s(l) - s(l - 1), for l E {2, segment. ns}. 

17 



Monte Carlo Mini-App for Exascale R&D 
LA-UR ll-xxx 

9. Attenuate - Estimate Bulk Effect on Intensity 

In addition to a segment object s, this step requires information about the 
materials and cross sections to calculate the mean free path A(Z, E) for a packet at 
energy, E = segment.E, in zones Z E {s.zone(:)}. The calculation of mean free 
paths was defmed in Section 4.4. For any segment object s, the energy is constant, 
simplifying the cross section requirements considerably. 

Inputs: A segment object; materiaVenergy dependent mean free path. 

Parallelism: On segments (packets), potentially on zones 

Memory: 

The attenuate step converts the segment list from length units [cm] to mean
free-path units to allow for simple, cumulative attenuation along the trace. 

Recall that attenuation of intensity (weight in our context) from passing through 
a distance ds in a material with mean free path A is given by: 

wgt(ds) = s. Wo x e-ds/t.. 

By converting lengths ds into units of mean-free-path, df = ds / A, the equation 
simplifies to this: 

wgt(f) = s. Wo x e-d€ 

With our segment list converted to mean free paths, attenuation through 
multiple zones is given by: 

wgt(i) = s. Wo x e-Id€U) for j < i, or 

i-I 

wgt(i) = s. Wo x e-€Ci) for f(i) = I dfU) 

j=l 

This is the weight of the path segment in the lh zone intercepted. Note that 
wgt(l) = s. Wo; that is, the weight in the zone of origin is the original 
(un-attenuated) weight. 
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10. Tally - Accumulating Results 

For each batch of packets (parent or child), tallies represent the accumulation of 
some quantity as an estimate of a desired attribute of the entire system. The 
accumulation can be over zones (a flux tally) or on an image plane (image tally). 
This section discusses the similarity and differences between the two tally types. 

10.1.1 Flux Tally 

A (scalar) flux tally can be used to estimate the radiation flux as a function of 
energy in the mesh. The radiation flux (units of [cm-2]) is a measure of the 
intensity of radiation as a function of energy, zone by zone. 

The basic dimensionless flux tally is simply the accumulation of the mean free 
path lengths, L1RE(i) = (i) - RE(i - 1), appropriately attenuated, traveled in each 
zone. 

cp(z(i), E) = I (L1RE(i) x e-£ECi-l)) 

Conversion to a radiation flux is done by multiplying by the mean free path, 
A(Z, E), and dividing by the zonal volume, Vol(z). 

A(Z, E) x cp(z, E) 
~(z, E) = Vol(z) 

Other tlux-based tally types can be estimated by adding appropriate factors in 
the flux summation. For instance, an energy flux (a single number per zone) could 
be obtained by multiplying each contribution by the packet energy. Similarly, an 
energy deposition tally could be made by applying a (modified) material stopping 
power to each contribution. 

10.1 .2 Image Tally 
It is also possible to accumulate image tallies from the radiation packets 
(attenuated) that are transmitted through the geometry. This work has not yet been 
started 
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11. Spawn - Creating Child Packets 

With the calculated list of attenuation lengths, f(i), found above, we can 
generate randomly sample secondaries (child packets) emitted from reactions of 
the parent packet with the materials in the geometry. These packets will be used to 
calculate additional contributions to tally estimates. In a radiography calculation, 
for example, the (first generation) "parent" batch contributions represent a direct 
image. Child packet batches will represent a scatter contribution to calculated 
Images. 

A reaction distance in mean free paths can be sampled using the formula 
dt = -In[~~rand) where a random value, rand E {O,l} is used. Note that this is 
always a positive value. 

If we sample multiple steps accumulating the random strides until we exceed 
the maximum length (in mean free paths) along a trace, we obtain the number child 
packets to generate and enough information to determine their initial locations. 

I I I 

f (k) = f (k - 1) + [-In(rand)] for k E {I, n E: f (n) < f max } 

r I I 
i l" 

12 ! I ~ :'2: 

28 ' i 
Figure 3: Secondaries Example. In this example continued from Figure 2, two child packets are created in 

zones 12 and 28, respectively. Their origins will lie on the original track. The energy, direction and 
weight will be sampled lIsing reaction kinematics for the respective materials using the original packet 
energy and direction as input. 

The child locations found are given in cumulative mean free paths. These 
values are used to identify the zones in which the reactions occur and are also 
converted back into physical distances (from the parent's origin) to establish the 
secondary origins. A child packet is created in the nth zone of a segment, 

I 

s. zone(n), where fen - 1) < f < fen). The physical distances from the parent's 
origin (measured along the parent's direction) to the child packet origin is given 
by: 

a' (i) = '<-(z(n), E) x (i CO - t(n)) + (%, [.<-(z(j), E) x t(j)]) 

The new origins (as points) are obtained from the distances d'(:) and the parent 
data, Po. 
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pi (:). pOS = PO' pOS + PO' dir X d' (:) 
The direction, energy and final weight of each child will be randomly sampled 

using reaction kinematics defined by the cross sections J. The colliding weight is 
the parent weight, Po. wgt, attenuated by the distance to the collision. 

pi (:). wgt = Po. wgt x e-i (:) 

Reaction kinematics can increase or decrease a child packet's weight. For 
example, if the collision is a capture (absorption), the kinematic weight is zero and 
we can discard the child. But if the collision is an (n, 2n) reaction (one neutron in, 
two out), the kinematic weight is two. In this case, we can either generate two child 
packets each of the colliding weight or one child of twice the colliding weight. 

After creation, a batch of these child packets (all arising from a parent batch) 
will be processed as its own "batch" with results being added to appropriate parent 
batch tallies. Child packets are processed through the same computational as their 
parents: RayTrace, Segment, Attenuate, Spawn (if more generations are needed or 
requested) and Tally. The Normalize step can be deferred until all 
required/requested generation batches are completed. 

It is possible to spawn multiple generations (parent -> child -> grandchild ... ) 
and accumulate the results. For now, the number of levels will be taken as zero 
(no children) or one (one generation) with an option for more generations as a 
runtime parameter. 

I See Appendix B for consideration of Center of Momentum [CM] corrections to reaction kinematics 
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Appendix A: Source Distributions and Sampling 

Generation of initial radiation packets requires the provIsIOn of probability 
distribution functions (PDFs) and sampling techniques to be used with them. This 
appendix describes some common source distributions, simple descriptions for 
them and methods for randomly sampling from them. 

Source descriptions may include intensity (weight), location, direction, energy 
and perhaps time. The radiation type of a source must also be known and may 
include more than one radiation type. For a single radiation type, the source can 
have up to nine (9) independent variables - a 9D phase space. It is possible for the 
PDFs to be inseparable functions of all of these variables, however, in practice, the 
function is separable (or approximately separable) into simple functional forms of 
the different variables. 

The general form for sampling a random value (x) from a PDF described by a 
function [(x) is 

fX [(c)dc 
Cmin 

E = ----=';.:.:,;,,:.,.---
fCmax [(c)dc 

Cmm 

where E E (0,1]' For many analytic PDFs, a closed form for x can be derived. 
More complicated forms may require a rejection-based sampling scheme. 
Examples of both for sampling a direction randomly in 4n are given in 
Appendix B. 

For the purposes of this application, energy, weight and time will be considered 
as independent (uncorrelated) variables in the phase space. PDFs for these 
variables wil1 be supported as piecewise-constant (histogram), piecewise-linear and 
polynomial forms. 

Location will be considered to be independent of direction in most cases. Note 
that this is an oversimplification for many applications, but will suffice for the 
purposes of this mini-App. Only for uniform spherical sources and planar sources 
coupled with non-isotropic directional PDFs will a correlation be supported. In 
these cases, the direction sampled will be with respect to [w.r.t.] the radial location 
vector (for spherical volumes) and w.r.t. the surface normal vector (for surface 
sources). Hence, in those cases, a rotation of the sampled direction is required to 
convert it to the default Cartesian system. 

Location: Volume, surface and point distributions will be supported. Point 
sources are obvious. For a single point, each packed will originate at that point. For 
multiple points, each point will be given a probability. A packet's origin will be 
chosen randomly from the list using the probabilities. 
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Surface sources will be supported from planes and spheres. 

Volume sources that vary in Cartesian location (x,y,z) or radius (R) will be 
permitted with polynomial forms. The most basic form is a uniform distribution 
within a spherical or parallelepiped volume. 

Uniform Parallelepiped: Sampling a location in a uniform parallelepiped is 
straightforward. A position along each axis is sample uniformly within the 
limits along that axis, i.e., x = Xmin + £ X (xmax - Xmin) for £ E (0,1]' If 
the parallelepiped is not aligned with the default Cartesian coordinate 
system, the simplest approach is to sample as if it is aligned and apply the 
necessary, fixed rotation. 

Uniform Sphere: For a uniform spherical distribution of radius Rmax , a radius is 
sampled using the cube-root of one random number £ E (0,1]: 

r = R x £1/3 max 

This form is obtained by substituting f(c)dc = r 2 dr into the general form 
given above with radial limits of [0, Rmax]. The orientation within the 
sphere is calculated using the methods described in Appendix B for choosing 

I 

a random isotropic direction in 4n, (u, v, w). For this purpose, the result is 
equivalent to a random rotation with respect to the default z-axis. 
Multiplying a random rotation by a random radius r gives a random 

I 

Cartesian position: p. pos(1: 3) = r x (u, v, w). 

Direction: Direction distributions can be isotropic or angularly biased. The 
forms this mini-App will support are isotropic and cylindrically-symmetric 
anisotropic. 

Isotropic: See Appendix B for methods to sample from a fully isotropic 
distribution. 

Anisotropic: A cylindrically symmetric anisotropic distribution is one that 
varies as a function of the angle from a specified symmetry axis. The 
symmetry axis may be arbitrarily defined by a constant unit direction or may 
be correlated to a chosen location. See the discussion above for how this 
axis is correlated to some location PDFs. Azimuthally around the symmetry 
axis, the distribution is assumed to be uniform, i. e., the azimuthal angle is a 
random value ~ E (O,2n]. Axial distributions will be supported as functions 
of the cosine of the axial angle, e.g., f(c)dc = cos(8)d8, in the general 
form. Limits on the range of 8 will also be permitted, specifically being 
helpful for radiography point sources. One commonly used set of functions 
are the Legendre polynomials [P nJ. Note that the isotropic distribution is a 
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special case of this with fCc) = 1 [Po]. There IS a recurSIve fonn for 
Legendre polynomials: 

Po = 1 
PI = x 

(2n + l)xPn (x) - nPn - 1 (x) 
Pn+1(x) = n+ 1 
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Appendix B: Sampling a Random Direction in 41t 

Sampling a direction randomly in 3-space can be equated to uniformly sampling 
locations on a unit sphere. Such locations can be specified by two angles, an axial 
angle in the range [0, rr]; and an azimuthal angle in the range [O,2rr]. The 
azimuthal angle is unifonnly distributed in angle. However, the axial angle is 
uniformly distributed in the cosine of the angle. 

There are direct and rejection approaches to sampling random values that meet 
these conditions. 

Direct Technique: 
The z direction cosine, W, is randomly distributed between (-1, 1], so it can 

be chosen simply with one random number, £ E (0,1]: 

W = 2£ - 1 
The transverse direction cosine, call it f3, is given by: 

f3 = )1 - w 2 

Note that f3 = ..Juv + v2 as well. 

The azimuthal angle is randomly distributed between (O,2rr]. For such a 
random angle, £ E (O,2rrJ, the direction cosines for x and yare given by 

u = f3 X cos(£) 

V = f3 x sin[!~£) 

2D Rejection Technique2
: 

It may be faster to reject some values than calculate trig functions. The 
azimuthal direction cosines, u and v, can be sampled using a rejection scheme. 

With wand f3 calculated as above, choose two random values, a and b, in 
the range ( -1, 1 ]. 

• If (a 2 + b 2 ) > 1, reject the pair and choose again. (~21.5% likelihood 
of rejection) 

• When accepted values are found (~78.5% likelihood for any pair), u and 
v are given by: 

2 Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, L~ & Koblinger, CRC Press, 1990 
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Appendix C: Center of Momentum Corrections for Kinematics 

Cross section tables describe the kinematics in the collision's center-of
momentum [CM] frame of reference. If the material is taken to be stationary (the 
lab frame of reference), the collision CM is determined by the energy and direction 
of the parent and the mass of the isotope with which it collides. To sample the 
cross section tables in the CM frame, we need to find the parent packet energy in 
the CM. For this MC mini-App, Galilean transformations will be used for 
simplicity.3 

In the CM, the packet momentum (a vector quantity) is equal to and opposite 
the nucleus' momentum. Starting with momentum formula p = mv, energy 

formula E = P'P, and an initial nucleus velocity of zero, we solve for a change in 
2m 

speed !1v E: ffip (Ivp I - !1v) = mn!1v, yielding !1v = ( mp Iv
p I r Substitution into 

mp+mn 

the energy formula gives the collision energy in the CM, Ep'. 

E ' = ~m (v _ ffip Ivp I )2 = E ( ffin )2 < E 
p 2 p p (mp+mn) p mp+mn - p 

This reduced projectile energy is used to sample the cross section kinematics to , , 
create the CM-based child packets, Pc' The resulting CM-energy, Ec , and CM-
direction, p~. dir, are transformed back to the laboratory frame. These 
transformations are accomplished by adding the vector momentum component, 

mc!1v X Po. dir to the vector CM-momentum of the child )2mcE'c x Pc'. dir. 
This vector sum gives the child's lab-frame momentum, from which its direction 
and energy can be derived. 

3 Special relativity corrections to energy and momentum should to be considered in CM transformations to ensure 
the physics is accurately represented. Further adjustment to the CM for random nuclear motion in "hot" bulk 
material may also be important. 
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