
CDFShop: Exploring and Optimizing
Learned Index Structures

Ryan Marcus
MIT CSAIL

ryanmarcus@csail.mit.edu

Emily Zhang
MIT CSAIL

eyzhang@csail.mit.edu

Tim Kraska
MIT CSAIL

kraska@csail.mit.edu

ABSTRACT
Indexes are a critical component of data management appli-
cations. While tree-like structures (e.g., B-Trees) have been
employed to great success, recent work suggests that index
structures powered by machine learning models (learned
index structures) can achieve low lookup times with a re-
duced memory footprint. This demonstration showcases
CDFShop, a tool to explore and optimize recursive model
indexes (RMIs), a type of learned index structure. This demon-
stration allows audience members to (1) gain an intuition
about various tuning parameters of RMIs and why learned
index structures can greatly accelerate search, and (2) under-
stand how automatic optimization techniques can be used
to explore space/time tradeoffs within the space of RMIs.
ACM Reference Format:
Ryan Marcus, Emily Zhang, and Tim Kraska. 2020. CDFShop: Ex-
ploring and Optimizing Learned Index Structures. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3318464.3384706

1 INTRODUCTION
Index structures are a fundamental part of many data man-
agement applications. Compared to searching an entire data-
base, index structures enable accelerated data access by nar-
rowing the search range to a small portion of the data.

At a high level, all index structures act as an approximate
function from a lookup key to an index. For example, a B-
Tree realizes this function with a tree structure, providing
𝑂 (log𝑛) lookup time. Other index structures [2, 6, 9] deeply
optimize this tree structure using a wide array of techniques.
Regardless of optimizations, all index structures map a key to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384706

linear

cubic
1

cubic
2

cubic
n...

Stage 1

Stage 2

Figure 1: An RMI. The linear model (stage 1) makes
a coarse-grained prediction. Based on this, one of the
cubic models (stage 2) makes a refined prediction.

a small range of the underlying data, allowing the application
to scan just the small range (e.g., only a few pages, depending
on the granularity of the index). Viewing indexes as func-
tions, the size of this small required scan can be thought
of as the error of the index. When the underlying data is
sorted, this function can be thought of a scaled version of
the cumulative distribution function (CDF).
Instead of tree or table-based realizations of lookup-key-

to-index functions, we can also use machine learning (ML)
models, resulting in a learned index structure [8]. By training
a model to predict the correct index given a lookup key, theo-
retically any machine learning model can be used as an index
structure. Practically, a good learned index structure requires
a model that has both fast inference time and can learn the
fine-grained resolution of the key-to-index function.

Recursive model indexes (RMIs) are one such class of mod-
els [8] (although others [3–5, 11] exist as well) , combin-
ing simpler machine learning models together into a multi-
staged structure. For example, as depicted in Figure 1, an
RMI with two stages, a linear stage and a cubic stage, would
first use a linear model to make an initial prediction of an
index for a specific key (stage 1). Then, based on that pre-
diction, the RMI would select one of several cubic models to
refine this initial prediction (stage 2). RMIs can often achieve
70% faster lookup times with an order-of-magnitude smaller
memory footprint than tuned B-Trees [7].
Like traditional index structures, RMIs require tuning to

achieve excellent performance. Most machine learning mod-
els will have some training error, and thus RMIs, just like
B-Trees, will not perfectly predict the location of each key.
This error can be decreased by adding more parameters to
the ML model, thus decreasing the range of the underly-
ing data to search. However, adding more parameters also
increases the model’s memory footprint and inference time.

https://doi.org/10.1145/3318464.3384706
https://doi.org/10.1145/3318464.3384706


Different configurations make different tradeoffs between
space and time, but not all configurations are valuable. Users
are likely interested in the Pareto front of RMIs with re-
spect to memory footprint and time: RMIs that have the best
lookup times for their size. However, these ideal configura-
tions are not always obvious, and vary between datasets.
This demonstration will showcase CDFShop, our tool

for designing RMIs and exploring this Pareto front for in-
memory data. CDFShop enables the rapid exploration of
RMI configurations, giving direct visibility into how con-
figuration changes affect the CDF approximation and the
lookup latency. CDFShop also contains an automatic opti-
mizer, which attempts to find RMI configurations on the
Pareto front. Since the space of all possible RMIs is large,
our optimizer uses a combination of modeling and iterative
exploration inspired by game theoretic techniques.
Conference participants will be able to explore the space

of RMI configurations over a variety of different datasets,
observing how RMI hyperparameters affect prediction accu-
racy and lookup latency in real time. Additionally, attendees
will be able to interact with CDFShop’s automatic optimizer,
seeing visualizations of how our technique searches the large
space of RMI configurations.

2 THE RECURSIVE MODEL INDEX
For simplicity, we explain only two-stage RMIs here. For
a generalization to 𝑛-stages, see [8]. A two-stage RMI is a
function 𝐹 trained on 𝑁 data points (key / index pairs). The
RMI 𝐹 is composed of a single first stage model 𝑓1, and 𝐵

second-stage models 𝑓 𝑖2 . The value 𝐵 is referred to as the
“branching factor” of the RMI.

Formally, the RMI is defined as:

𝐹 (𝑥) = 𝑓
⌊𝐵×𝑓1 (𝑥)/𝑁 ⌋
2 (𝑥) (1)

Intuitively, the RMI first uses the stage-one model 𝑓1 (𝑥) to
compute a rough approximation of the index of key 𝑥 . This
coarse-grained prediction is then scaled between 0 and 𝐵, and
this scaled value is used to select a model from the second
stage, 𝑓 𝑖2 (𝑥). The selected second-stage model is then used to
produce the final prediction. The stage-one model 𝑓1 (𝑥) can
be thought of as partitioning the data into 𝐵 buckets, and
each second-stage model 𝑓 𝑖2 (𝑥) is responsible for predicting
the index of only the keys that fall into the 𝑖th bucket.

Training. As described in [8], RMIs can be trained end-to-
end by minimizing a loss function. Let (𝑥,𝑦) ∈ 𝐷 be the set
of key / index pairs in the underlying data. Then, an RMI is
trained by adjusting the parameters contained in 𝑓1 (𝑥) and
𝑓 𝑖2 (𝑥) to minimize the squared error:∑

(𝑥,𝑦) ∈𝐷
(𝐹 (𝑥) − 𝑦)2 (2)

Name Form Parameters
Linear 𝑓 (𝑥) = 𝑎𝑥 + 𝑏 𝑎, 𝑏

Log-linear 𝑓 (𝑥) = exp(𝑎𝑥 + 𝑏) 𝑎, 𝑏

Cubic 𝑓 (𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 𝑎,𝑏, 𝑐, 𝑑

Radix 𝑓 (𝑥) = 𝑥 >> 𝑎 𝑎

Normal 𝑓 (𝑥) = 1
2 ×

(
1 + 𝑒𝑟 𝑓

(
𝑥−𝑎
𝑏×

√
2

))
𝑎, 𝑏

Table 1: A subset of available model types
Intuitively, minimizing Equation 2 is done by training “top

down”: first, the stage one model is trained, and then each
stage 2 model is trained to fine-tune the prediction. Details
can be found in [8]. Our implementation is available at [1].

2.1 Hyperparameters
Equation 1 makes obvious the primary hyperparameters of
an RMI. First, the exact form (model) of 𝑓1 (𝑥) and 𝑓 𝑖2 (𝑥) must
be selected. Second, a branching factor 𝐵 must be chosen.

Models. Table 1 lists a few of the model types available in
CDFShop. Choosing the form of the stage-one and stage-two
models can have a large impact on the performance of an
RMI for two reasons: error and inference time. For example,
if the CDF of the underlying data is more-or-less linear, then
linear models may provide a low-error fit. If the CDF has an
exponential shape, a log-linear model may have low error.
However, computing exp(𝑎𝑥 + 𝑏) is substantially more ex-
pensive than computing 𝑎𝑥 + 𝑏. More complex models may
provide a better fit, but at a higher computational cost: thus,
sometimes a model with higher error but faster inference
may be preferable to a model with lower error.

Branching factor. Intuitively, the branching factor 𝐵 deter-
mines the number of “buckets” that data is divided into by
the stage-one model. Creating more buckets (high values of
𝐵) is likely to improve prediction accuracy, but may increase
inference time. For example, if 𝐵 is chosen so that all of the
RMI’s parameters fit on a single cache line, then the entire
RMI is likely to become resident in cache. If 𝐵 is large, every
inference may potentially require a last-level cache miss.
To alleviate the difficulty of tuning an RMI, we next de-

scribe a simple optimization approach that can help identify
Pareto efficient RMI configurations.

3 OPTIMIZER
Unfortunately, the simplest strategy for finding good RMI
configurations, a grid search, is not practical. Evaluating the
lookup time of an RMI requires performing a large number
of lookups over a large dataset. Worse yet, this evaluation
time is related to the error of the RMI: evaluating RMIs with
high error takes longer. Luckily, measuring (1) the inference
time (the time needed to predict the index of a key), (2) size,
and (3) training error of an RMI can be done quickly. Thus,
we propose a simple optimization strategy inspired by [10].



Let the set of all RMI configurations be 𝐶 . For any 𝑐 ∈ 𝐶 ,
we say that the lookup time of the RMI is𝑇𝑐 and the size of the
RMI is 𝑆𝑐 . We thus seek𝑂𝑝𝑡 (𝐶), the subset of configurations
that are Pareto optimal (i.e., the set of all RMI configurations
for which no other configuration is both smaller and faster).

𝑂𝑝𝑡 (𝐶) = {𝑐 | ¬∃𝑐 ′(𝑐 ′ ∈ 𝐶 ∧ 𝑐 ≠ 𝑐 ′ ∧𝑇𝑐′ ≤ 𝑇𝑐 ∧ 𝑆𝑐′ ≤ 𝑆𝑐 )}

Assumption 1. We model the lookup time 𝑇𝑐 of an RMI 𝑐
as the sum of its inference time 𝐼𝑐 and an unknown mono-
tonically increasing function 𝛽 of its error, 𝐸𝑐 .

𝑇𝑐 ≈ 𝐼𝑐 + 𝛽 (𝐸𝑐 ) (3)
Intuitively, 𝛽 (𝑥) represents the time it takes to search for a
key given a search range of 𝑥 key, but we note that we do
not model 𝛽 explicitly, we merely assume 𝛽 (𝑥) increases as
𝑥 increases. We note that, as long as Equation 3 holds, any
configuration that is not on the Pareto front of (𝐼𝑐 , 𝐸𝑐 , 𝑆𝑐 )
cannot be in 𝑂𝑝𝑡 (𝐶). Thus, searching the Pareto front of
inference time, error, and size can be used to more efficiently,
compared to a grid search, generate candidates of 𝑂𝑝𝑡 (𝐶).

Assumption 2. Imagine two pairs of RMIs that each use
the same model, but different branching factors (𝑐1, 𝑐2) and
(𝑑1, 𝑑2). Then we assume that:

(𝑆𝑐1 = 𝑆𝑑1 ∧ 𝑆𝑐2 = 𝑆𝑑2 ∧ 𝐸𝑐1 < 𝐸𝑑1 ) → (𝐸𝑐2 < 𝐸𝑑2 ) (4)

For example, imagine (𝑐1, 𝑐2) both use cubic models, whereas
(𝑑1, 𝑑2) both use linear models, and that the RMI with cubic
models 𝑐1 has a lower error than the RMI with linear models
𝑑1. If 𝑐1 and 𝑑1 are the same size, and 𝑐2 and 𝑑2 are the same
size, then we assume that 𝑐2 has a lower error than 𝑑2. Con-
cretely, if a 1MB cubic model has lower error than a 1MB
linear model, then we assume that an 8MB cubic model will
have lower error than a 8MB linear model.

We make an identical assumption about inference time:

(𝑆𝑐1 = 𝑆𝑑1 ∧ 𝑆𝑐2 = 𝑆𝑑2 ∧ 𝐼𝑐1 < 𝐼𝑑1 ) → (𝐼𝑐2 < 𝐼𝑑2 ) (5)

Both of these assumptions have known exceptions. For
example, many neural network architectures are designed
with a large or small number of parameters in mind, and
do not exhibit good performance otherwise. However, we
believe that these assumptions are reasonable for simpler
models, such as those in Table 1.

3.1 Search procedure
Given the assumptions above, we find Pareto efficient RMIs
using a four step process. Assume that 𝑀 is the set of all
possible models (e.g., Table 1).

In step 1, we measure the inference time and error of the
|𝑀 |2 possible model configurations at different sizes (e.g.,

4KB, 1MB, 4MB, etc.). We then determine 𝑀 ′, the set of
model configurations that have at least one representative of
the Pareto front of inference time, size, and error. From our
modeling assumptions (Equation 3), we know that all RMIs
in 𝑂𝑝𝑡 (𝐶) use a model configuration that is in𝑀 ′.
In step 2, we expand our search by measuring the infer-

ence time and error of additional configurations with models
drawn only from𝑀 ′, using different sizes than used in step
1 (e.g., in step 2, 8KB, 2MB, etc.). We combine these results
with the results from step 1, and construct a candidate set of
configurations that are on the Pareto front in terms of size,
inference time, and error.
In step 3, we relax assumption 1. We measure the actual

lookup performance of the candidate set produced by step
2. This is feasible because this candidate set will be much
smaller than 𝐶 . Then, we can produce a new candidate set
containing only the RMI configurations that are Pareto effi-
cient in terms of size and actual lookup time.
In step 4, we relax assumption 2. We measure the actual

lookup performance of a small number of additional configu-
rations selected by varying the sizes of the configurations in
the candidate set from step 3. For example, if the candidate
set from step 3 contained a 1MB linear model, we would
additionally test a 512KB linear model and a 1.5MB linear
model, providing a better coverage of the Pareto front.
After step 4, the RMI configurations are displayed to the

user, so that the user can easily navigate the size vs. latency
landscape. Experimentally, we found that our optimization
technique always found RMI configurations as good or better
than those found by hand tuning in [7].

4 DEMONSTRATION
Our demonstration is comprised of two scenarios. In the first
scenario, users can explore how different RMI configurations
affect lookup performance andmemory footprint, while com-
paring RMIs against binary search and B-Trees. In the second
scenario, users can investigate CDFShop’s optimizer, visually
exploring each step of the process.
Scenario 1: Exploring RMIs. Our first scenario will allow

users to test and explore different RMI configurations. Users
can (1) visualize how the resulting RMI approximates the
CDF of the data distribution, (2) measure the lookup perfor-
mance of any RMI configuration, and (3) explore the size vs.
performance tradeoffs inherent to index structures, compar-
ing against binary search and a cache-optimized B-Tree [7].
A screenshot of the interface for this scenario is shown

in Figure 2. The pull-down menu in the top-right can be
used to select from several datasets. The top-left plot shows
the keys and indexes of the dataset (black) and the index
predicted by the current RMI (red line). As pictured, the plot
shows all 200 million keys in the dataset. Users can zoom in



Figure 2: Testing RMI configurations

Figure 3: Exploring automatic optimization

on the plot using the mouse. The panel on the right shows
information about the current RMI (maximum and average
error, size), and contains three pull-down menus to select
the configuration (stage 1, stage 2, and branching factor). As
users select different configurations, the key/position plot is
updated with the new prediction in real time.

When a user saves an RMI configuration, the currently
selected RMI configuration is added to the table (middle), and
its lookup latency is measured. Users can click the “info” icon
on each row the table to see additional information about
an RMI, including a plot of its error distribution. Each RMI
configuration in the table also appears in the size/latency plot
(bottom). The black line in this plot indicates the currently-
discovered Pareto front, illustrating the tradeoff between
index size and lookup latency. Users can explore the space
of RMIs in an iterative fashion, by increasing or decreasing
the size of the RMI or by modifying the models used.
Scenario 2: Automatic optimization. Our second scenario

will visualize the automatic RMI optimization process. For a
chosen dataset, users will see visual representations of each
of the four steps described in Section 3.
A screenshot of the interface for the first step of the op-

timization process is shown in Figure 3. The plot shows
the size/error/inference time relationships between configu-
rations. The green points are on the Pareto front, and thus
correspond to configurations that will be explored in the next
step. Gray points are off the front, and correspond to model
configurations that can be excluded from the search. The
lower panel shows which models will be further explored,
and which have been eliminated.
The blue “Next” button begins the second optimization

stage (as described in Section 3), and the user is shown a
similar display containing those results. After progressing
through the four optimization steps, users are shown a plot
of the discovered time/space Pareto front, and can inspect
the configurations that fall on that front.

5 CONCLUSIONS
Learned index structures can provide fast lookup times with
small memory footprints, but require proper tuning. Our
demonstration will give audience members an intuition for
how the parameters of RMIs affect the lookup latency and
model size tradeoff. Additionally, our demonstration illus-
trates how this process can be automated under a modest
set of assumptions.

REFERENCES
[1] MIT RMI, https://learned.systems/rmi.
[2] R. Binna et al. HOT: A height optimized trie index. In SIGMOD ’18.
[3] J. Ding et al. ALEX: An Updatable Adaptive Learned Index. arXiv ’19.
[4] P. Ferragina et al. The PGM-index. arXiv ’19.
[5] A. Galakatos et al. FITing-Tree. In SIGMOD ’19.
[6] C. Kim et al. FAST: Fast architecture sensitive tree. In SIGMOD ’10.
[7] A. Kipf et al. SOSD. In MLForSystems @ NeurIPS ’19.
[8] T. Kraska et al. Learned Index Structures. In SIGMOD ’18.
[9] V. Leis et al. The adaptive radix tree. In ICDE ’13.
[10] R. Marcus et al. NashDB: An Economic Approach to Fragmentation,

Replication and Provisioning for Elastic Databases. In SIGMOD ’18.
[11] V. Nathan et al. LearningMulti-dimensional Indexing. InMLForSystems

@ NeurIPS ’19.


	Abstract
	1 Introduction
	2 The recursive model index
	2.1 Hyperparameters

	3 Optimizer
	3.1 Search procedure

	4 Demonstration
	5 Conclusions
	References

