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ABSTRACT
There has been a lot of excitement around using machine learn-
ing to improve the performance and usability of database systems.
However, few of these techniques have actually been used in the
critical path of customer-facing database services. In this paper, we
describe Auto-WLM, a machine learning based automatic work-
load manager currently used in production in Amazon Redshift.
Auto-WLM is an example of how machine learning can improve
the performance of large data-warehouses in practice and at scale.
Auto-WLM intelligently schedules workloads to maximize through-
put and horizontally scales clusters in response to workload spikes.
While traditional heuristic-based workload management requires a
lot of manual tuning (e.g. of the concurrency level, memory allo-
cated to queries etc.) for each specific workload, Auto-WLM does
this tuning automatically and as a result is able to quickly adapt and
react to workload changes and demand spikes. At its core, Auto-
WLM uses locally-trained query performance models to predict the
query execution time and memory needs for each query, and uses
this to make intelligent scheduling decisions. Currently, Auto-WLM
makes millions of decisions every day, and constantly optimizes
the performance for each individual Amazon Redshift cluster. In
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this paper, we will describe the advantages and challenges of im-
plementing and deploying Auto-WLM, as well as outline areas of
research that may be of interest to those in the “ML for systems”
community with an eye for practicality.
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1 INTRODUCTION
Amazon Redshift uses machine learning in a number of different
ways. For example, Redshift uses models to decide when to auto-
matically create materialized views, trigger “vacuums” of tables,
to recommend and create and sort-keys, and more [2]. These opti-
mizations are largely high-level (e.g., when to create a materialized
view) and knob-tuning as they adjust traditional database compo-
nents and have been explored in other work [11, 50]. More recently
ML-enhanced, or instance-optimized, components [20, 23, 26–28,
43, 54, 55] have been proposed, which go beyond the tuning of tra-
ditional components and deeply embed machine learning models
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Figure 1: Concurrency changes on a real workload.

into the database. However, so far the adoption of ML-enhanced
components has been limited despite the potential performance
advantages, as reliably integrating machine learning into the critical
path of any database management system is far from trivial.

In this paper, we describe Auto-WLM, Amazon Redshift’s in
production, machine learning based automatic workload manager.
Auto-WLM serves as an example of how ML-enhanced components
can be made practical. As of today, Auto-WLM schedules every
query on Amazon Redshift, using query run-time and memory
prediction models. This includes decisions on the optimal number
of concurrent queries (i.e., admission control), priority of queries
(i.e., scheduling), and when to horizontally scale the cluster to
increase its capacity (i.e., elasticity).

Cloud data-warehouses, like Amazon Redshift, are expected to
efficiently run mixed workloads consisting of read and write, long
and short, and local and federated queries. As different types of
queries have very different resource requirements, tuning the query
admission/scheduling policy is complex and even expert DB admin-
istrators may struggle with it. To make matters worse, workloads
are rarely constant. For example, in the morning when analysts
start their work, we can often observe a peak of short-running dash-
board queries which normalizes throughout the day. ETL queries
tend to run during the night, but can vary widely in complexity and
size depending on the accumulated data. In addition, urgent ad-hoc
business needs can put a lot of load on a system at unexpected times.
Customers need their database to scale to changing workloads at
a reasonable cost, and meeting these needs can be a substantial
challenge for administrators.

On-premise database systems (e.g., Teradata, IBM DB2, SQL
Server) typically implement workload isolation techniques, such as
query queues. These longstanding techniques allow users to create
multiple queues to divide the resources of a database system to con-
trol the amount of memory and CPU each query gets as well control
the number of concurrent queries [1, 15]. This works as long as the
workload is mostly static and homogeneous, but breaks down when
the workload is dynamic, requiring constant adjustment. In addi-
tion, if the difference between the peak and the average workload is
high, then the choice before customers is to either under-provision
the database system and live with performance issues at peak time,
or size for peak and overpay for rest of the workload.

To address this, modern cloud database systems offer automatic
horizontal scaling, which dynamically adds additional compute
nodes to handle peak query volumes, and then removes the addi-
tional nodes when they are no longer needed. Figure 1 shows the
number of concurrent queries running on a Redshift cluster across
15 days. There are significant spikes in concurrency that need to

be handled. Determining the optimal time to scale horizontally
(i.e., add new nodes), increase concurrency, or change scheduling
policies is a non-trivial task and requires understanding the re-
source demands of each query. For example, if horizontal scaling
is done prematurely, resources are unnecessarily wasted, and if
horizontal scaling is done too late, overall query performance is
negatively impacted. Additionally, whenever queries queue there
is a risk of disproportional increase in the response time of short
running queries compared to their execution time; a phenomenon
often referred to as head of the line blocking (HLB).

In this paper, we describe an autonomous workload manage-
ment system, called Auto-WLM, which addresses all the use cases
outlined above while minimizing the knobs customers have to turn.
First, Auto-WLM uses machine learning models to estimate each
query’s memory and CPU requirements. This model is automat-
ically retrained and instance optimized to the customer’s cluster.
Second, a queuing theory model based on predicted execution time
of queries determines the right number of queries to execute con-
currently, to achieve the highest throughput. Third, if some queries
cannot be executed using currently available resources, Auto-WLM
horizontally scales database resources to execute them. Fourth,
short query acceleration — which prioritizes selected short-running
queries ahead of longer-running queries — helps to mitigate HLB
issues. Auto-WLM allows advanced users to further control the cost
performance trade-off by setting query or query queue priorities.
Finally, Auto-WLM allows users to specify query monitoring rules
and automatically aborts queries which violate them, to protect
against unnecessary abuse of resources.

While Auto-WLM is not the first ML-enhanced workload man-
ager (or scheduler) for data systems [26, 29, 43, 46, 57], to the best
of our knowledge Auto-WLM is the first used in a customer-facing
production system, and that combines elasticity decisions with
scheduling decisions for online workloads. Making Auto-WLM
practical required several iterations and a careful design, in par-
ticular ensuring that there are no surprises when faced with the
long-tail of workloads that Amazon Redshift serves. Moreover, as
Auto-WLM is in the critical path of every query, it is of utmost
importance that the time taken to make decisions does not add
significant overhead, especially for short-running queries. We will
conclude the paper with lessons learned from implementing Auto-
WLM and research challenges we believe are currently not well
addressed in the research field.

In summary, we make the following contributions:

• We describe Auto-WLM, a ML-enhanced workload manager
used in Amazon Redshift.

• We show how Auto-WLM uses ML-models with a dynamic
concurrency algorithm to maximize throughput, minimize
latency, and make scaling decisions.

• We show comprehensive experiments on public benchmarks
and production data to evaluate the performance of Auto-
WLM.

• We summarize the challenges of implementing Auto-WLM
and outline important research challenges, which we believe
are not yet addressed by the research community.



Auto-WLM: Machine Learning Enhanced Workload Management in Amazon Redshift SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA

2 RELATEDWORK
Machine Learning for Databases: Recently, machine learning
techniques have had a large impact on the administration and man-
agement of database systems. Machine learning systems have been
used for index recommendation [8, 9], configuration tuning [11, 50],
semantic queries [4], entity matching [35], and workload manage-
ment [29, 47]. In contrast, ML-enhanced components, which embed
ML-models deep inside the database to better adjust to specific
data or workloads, such as learned index structures [13, 21, 23],
learned storage layouts [7, 10, 32, 36], learned scheduling algo-
rithms, [26, 43, 57], or learned query optimization [27, 28, 54, 56])
— to the best of our knowledge — have so far not been adopted
for customer-facing database services. Some success stories exists
for internal workloads, where performance regressions are often
less concerning than in customer-facing deployments: for example,
the learned index integration into Google BigTable [17] and the
Bao-like learned query steering in Microsoft’s Scope [37, 58]. We
believe Auto-WLM is the first ML-enhanced component deployed
in a customer-facing data-warehouse service.

Workload Management in Databases: A database workload
management component has to make three different types of deci-
sions: admission, scheduling and execution resource control (elas-
ticity). AutoWLM uses a combination of smart algorithms and ML
models to perform all three. In each sub-area, significant prior work
exists. Summarizing each is beyond the scope of this paper. In the fol-
lowing, we focus mainly on recent work in using machine-learning
to improve admission, scheduling, and resource management.

In [52], a query scheduler was proposed for the Umbra research
database to self-tune the hyper-parameters of its fixed scheduling
policy for each input workload. In [40], an efficient query scheduler
for micro-tasks was proposed with tuned implementations for many
heuristic policies (e.g., fair, highest priority first, and proportional
priority). Decima [26] uses RL to fully-learn a jobs scheduler on
large clusters for Spark jobs. LSched [43] and [57] present novel
RL-based scheduling algorithm for analytical workloads, and aim
to take the state of the system and the intrinsics of query plans
into account. [29, 30] give supervised and reinforcement learning
solutions for scheduling and resource management, respectively.
[18, 49] use reinforcement learning during the query execution
process to adapt query plans based on live feedback. Admission
control has also been addressed using learned approaches [42, 48].

While these research results show a lot of promise, they did not
yet solve the practical issues we faced when developing Auto-WLM.
For example, Decima and LSched both assume that the number
of servers is fixed, whereas in Redshift it is possible to allocate
additional nodes. Moreover, Auto-WLM combines admission con-
trol, scheduling, and resource control into one component, whereas
many existing efforts focused on just scheduling. A notable ex-
ception is [29], which however deals only with batch workloads.
However, as we show throughout this paper, these decisions are all
highly intertwined and should be addressed together in order to
create even a basic “self-driving” database [41]. For example, if we
make a prediction about the memory resources needs of a query to
make a scheduling decision, it is only reasonable to use the same
prediction for resource control during query execution.

3 OVERVIEW
In this section, we describe the high level architecture of Amazon
Redshift Auto-WLM. Each Amazon Redshift database is split into
two parts: (1) the main cluster, which is always running whenever
the database is up, and (2) the concurrency scaling clusters which are
created and destroyed as needed to deal with spikes in the workload.
Auto-WLM manages both cluster types, and contains the following
five major components:

• Query performance model (ML predictor): a machine
learning model that is responsible for predicting the latency
and memory requirements of a query.

• Query prioritization strategy (Priority Assigner): a strat-
egy to assign queries higher or lower priorities based on the
predictions from the model (e.g., shortest job first).

• Admission controller: a module to determine whether or
not an incoming query should wait in the queue, be executed
on the user’s “main” cluster, executed in a special “short”
query queue, or sent to a concurrency scaling cluster.

• Utilization monitor: a module that computes the utiliza-
tion of cluster resources, and informs the admission control
module if more or fewer queries should be admitted.

• ML trainer: a module responsible for storing a sliding win-
dow of training data and periodically updating the query
performance model, which must be done in a low-overhead
way.

Figure 2 shows an overview of the architecture. To understand
how Auto-WLM works, we will briefly walk through the life of a
query on an Amazon Redshift cluster: when a query arrives, the
ML Predictor predicts the needed memory, needed CPU time, and
execution time for the query. Based on the predicted execution time,
the Priority Assigner assigns the query a priority, with the goal of
assigning high priorities to queries with low resource requirements
and fast execution times. By executing such queries with high
priority, Auto-WLM emulates an approximate shortest-job-first
scheduling, which minimizes average query latency. Once a query
has an assigned priority, the Admission Controller decides where
the querywill go. The Admission Controller, for each query, chooses
one of:

(1) place the query into the short query queue (described in
Section 4.2.1) if the query’s estimated resource utilization is
low and the query was assigned a high priority,

(2) execute the query on the user’s main cluster, executing it
when the predicated amount of memory and CPU time are
available and doing so is not expected to cause a drop in
throughput (described in Section 4.2.2),

(3) place the query on a concurrency scaling cluster, if an exist-
ing concurrency scaling cluster has sufficient resources,

(4) or, if none of the above options are available, place the query
in the main cluster’s queue with the assigned priority. If too
many queries are queued, a new concurrency scaling cluster
may be launched.

Once the query finishes executing, the Utilization Monitor com-
putes the current system utilization and gives suggestion to the Ad-
mission Controller to admit more or less queries based on whether
the system is under-utilized or over-utilized. In addition, the ML
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Figure 2: AutoWLM architecture overview. When a query arrives, the ML predictor determines the resource requirements of
the query. The priority assigner determines how short the incoming query is to support shortest-job-first scheduling. Given
the priority, the admission controller decides if the query should be executed on the main’s clusters short query queue, user
queue, or sent to a concurrency scaling cluster. Once a query finishes, two things happen: (1) the ML trainer adds the observed
query plan and latency to the training set, and may update the ML predictor, and (2) the utilization monitor determines if the
cluster’s resources are under- or over-subscribed, telling the admission controller to let in more/fewer queries.

Trainer will re-train the models periodically in order to get bet-
ter prediction quality. The next section discusses each of these
components in detail.

4 AUTOWLM
In this section, we describe each of Auto-WLM’s modules in detail,
discussing their design and implementation. Section 4.1 describes
the ML predictor and ML trainer, focusing on the specific latency
and overhead requirements on Amazon Redshift clusters. In Sec-
tion 4.2, we describe the admission controller, and how Amazon
Redshift automatically adapts the cluster’s concurrency level to fit
the user’s needs, as well as how new concurrency scaling clusters
are spun up and down. Finally, in Section 4.2.3, we explain how the
Priority Assigner helps keep average latency low by considering
both a query’s potential execution time and resource requirements.

4.1 Machine learning models in Auto-WLM
All of Auto-WLM’s intelligence depends on the accuracy of a solid
query execution and resource model. If we can accurately predict
the time and resource requirements of a query, then scheduling
each query correctly becomes significantly easier.

Requirements. Unlike prior work on query performance model-
ing [12, 14, 31, 33, 51], Auto-WLM’s query model has several unique
requirements. First, Auto-WLM’s query model is trained locally on
the production database cluster, so training overhead needs to be
low in order to avoid interference with query processing. This local
training also simplifies legal constraints, as the user’s data never
leaves their own cluster. Second, many Amazon Redshift queries
execute in just a few milliseconds, so any query model thus needs
inference times at the microsecond level to avoid a significant in-
crease in the runtime of small queries. Third, Auto-WLM’s query
model needs to be instance-optimized, that is, custom-tailored to

the user’s workload. A pre-trained model that worked for 95% of
customers but failed for 5% of customers would not be acceptable.
In fact, we found that Auto-WLM’s simple, instance-optimized “lo-
cal” models outperformed more sophisticated models that were not
instance-optimized (see Section 6 for more discussion).

To satisfy these three requirements, we select a small XGBoost [6]
model. Small XGBoost models are fast to train, and [6] provides an
optimized C/C++ inference library that meets Auto-WLM’s strict
latency requirements.

Modelling procedure. Similar to past work [33], the first step
in our modelling process is transforming a physical query plan
tree into a feature vector. While this may not provide the optimal
inductive bias for a performance model [28], we found this simple
approach to be effective. Our features are not substantially different
from those used in [33]: we walk the query plan tree and collect
operators of the same type, and aggregate (count and sum) their
estimated cost and cardinality. We additionally add features for the
presence of operators that we know will have a significant effect on
query performance (e.g., broadcast, reshuffle, range restricted scans),
as well as the query type (e.g., SELECT, INSERT). While simple, these
features can be collected quicklywith a linear timewalk of the query
plan tree, using only statistics that were already computed by the
optimizer.

As queries are executed, their observed features and latency
are added to our training set. In order to ensure the training set
does not grow unbounded,1 we use a sliding window approach,
discarding the oldest data point when a new one arrives. After
initially implementing this approach, we realized that our training
set was dominated by short queries – this makes sense, because the
majority of queries executed on Amazon Redshift complete in less

1Keeping the training set small is also essential for reducing training overhead.
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than 2 seconds. This can result in catastrophic predictions for long
running queries (which were always estimated to be short, as the
entire training set contained only short queries). To compensate
for this, we partitioned our training set into 𝑛 query latency “bins”,
each growing in size (e.g., the first bin may contain queries with
latency between 0 and 10 seconds, while the second bin would
contain queries with latency between 10 and 30 seconds). This way,
a flood of short-running queries will only evict queries from the
first bin, while rare long-running queries are kept around for longer.

At fixed intervals, the ML trainer fits an XGBoost model to the
training set. We selected hyperparameters for XGBoost via a large
experiment on the entire fleet, but found that the quality of the
model was surprisingly insensitive to most hyperparameters. As a
result, we selected hyperparameters primarily to reduce inference
time (smaller models are faster).

Why not use the optimizer cost model? A natural question to ask
about this architecture is: “you already have a query optimizer that
is computing advanced statistics about the data in an optimized way,
why not simply use the optimizer’s cost estimate to predict query
resources?” Indeed, this approach has been suggested before [53].
In fact, it seems quite odd that a model which takes optimizer cost
as input can produce results better than the optimizer cost itself.
There are several reasons why optimizer costs could be unfit for
this purpose: (1) optimizer costs are unitless, and only comparable
to themselves, (2) optimizer costs generally boil a complex query
plan down to as single number using simple polynomials, (3) the
optimizer’s cost model is often the first thing “hacked” to encourage
the planner to choose nodes taking advantage of new execution
engine features, and (4) the optimizer’s cost model is not instance-
optimized to the user’s data (e.g., the performance model can learn
to correct the optimizer’s mistakes, which will be different for each
customer).

In the end, we found that a model trained on optimizer cost
simply did not perform as well as the XGBoost model built from
the query plan tree. This result is especially intuitive when one
considers memory prediction: the optimizer’s cost model will report
similar costs for two query plans expected to have similar latency
but drastically different memory usage. This is consistent with prior
work [31, 33] as well. We validate this via an explicit comparison
in Section 5.4.

What about when the optimizer statistics are bad? A serious con-
cern with a model built on top of optimizer statistics is the ac-
curacy of the optimizer’s statistics. We know that, especially for
queries with many joins, an optimizer’s statistics may essentially be
noise [24]. Luckily, since the query optimizer is deterministic, the
noise produced for a particular join query will be the same noise each
time the query is seen. This allows the XGBoost model to learn an
association between a particular noisy value and a query runtime.
Since a low-impact tweak to a query’s predicates will (hopefully)
only produce a low-impact change to the cardinality estimation,
this learning is not just memorization (although memorization is
part of it).

Unfortunately, there are circumstances when the optimizer’s
estimates are not just poor, but entirely non-existent. For exam-
ple, a COPY query or a SPECTRUM query (arbitrary S3 read) depend
on external data sources that Amazon Redshift does not (and in

many cases, cannot) collect statistics about (e.g., the selectivity of a
predicate). In these cases, in the absence of any good data, the ML
predictor simply returns an estimate of the 95th percentile of the
past queries of these types (e.g., for a COPY query, return the 95th
percentile latency of all COPY queries seen previously). This strat-
egy is not as bad as it might initially seem: by overestimating the
time and resource requirements of these queries, the ML predictor
essentially ensures they have adequate resources for execution.

A mutli-purpose model: The ML predictor is a critical compo-
nent of Auto-WLM, but the ML predictor’s design makes it usable
throughout the rest of the database as well. Since the ML predictor
can estimate the memory and time requirements for an arbitrary
query, the ML predictor can be used for tasks such as materialized
view refresh latency prediction, estimating the appropriate com-
piler optimization level for a query, and even estimating the impact
of potential physical design changes. While a more purpose-built
model might have been sufficient (and perhaps even superior) for
Auto-WLM’s purpose, this design allows the ML predictor to be a
“service” for the rest of the cluster as well.

4.2 Priorities & admission controller
Estimating the performance properties of a query is only half the
battle. Once estimates are computed, Auto-WLMuses a combination
of a query prioritizer and an admission control module to decide
when and where to execute queries.

After the query resource requirements (memory and CPU) and
latency are estimated, the query is passed to the Priority Assigner.
The Priority Assigner uses the estimates from the ML predictor
to prioritize the query as either (1) short and cheap, (2) short, or
(3-5) one of three coarse-grained levels of non-short queries (e.g.,
medium, long, extra long). After this prioritization is performed,
the query is passed to the Admission Controller.

The Admission Controller is the most complex component of
Auto-WLM, so we give a short overview of it here before proceed-
ing to explain the details in the following subsections. Once the
query is passed to the Admission Controller, Auto-WLM will first
determine if the query is short running. If the query is predicted to
be short running, the query is eligible for Short Query Acceleration
(SQA), which allows the query to be executed on a dedicated slice
of resources used only for short queries. Details about SQA are in
Section 4.2.1. If a query is not short, Auto-WLM next attempts to
find an open “slot” on either the user’s main cluster or a concur-
rency scaling cluster that can execute the query, prioritizing the
main cluster followed by the oldest concurrency scaling cluster.
The number of slots available on each cluster, and the algorithm
for choosing amongst them, is described in Section 4.2.2. If no slot
is available, the query is entered into a priority queue (and may
trigger horizontal scaling), which is described in Section 4.2.3.

4.2.1 Short query acceleration (SQA). Most Amazon Redshift clus-
ters have a substantially skewed distribution of query latency: most
queries are short, but a few queries are very long. As a result, if
we applied a simple round-robin scheduling algorithm, every slot
on a cluster could potentially become blocked by a long-running
query. As a result, users would experience “head-of-line blocking”
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– a large number of short queries might be stuck waiting on a small
number of long queries. This degrades average query latency.

To resolve this, Auto-WLM implements Short Query Accelera-
tion (SQA). SQA reserves a small amount of resources on the user’s
main cluster that is always dedicated to executing short queries.
Queries that are predicted to require only a small amount of re-
sources and are expected to execute relatively quickly are eligible
to be executed using these dedicated resources. If the performance
model is incorrect, and a query executing using SQA resources ends
up using significantly more time or resources than expected, the
query is cancelled and reprocessed as a long query. This cancellation
is transparent to the user.

There are many edge cases and failure modes for this design.
For example, if the predictor produces a large number of mispre-
dictions at once, the small dedicated SQA resources may become
overwhelmed, leading to thrashing. Such thrashing would result in
truly-short queries being evicted from SQA, resulting in massive re-
queuing. One might think that a solution to this problem would be
to simply let mispredicted queries execute until they are complete.
However, since queries executed using SQA-reserved resources are
allocated less memory than normal, mispredicted queries can end
up spilling to disk, potentially thrashing the local disk’s cache and
slowing down the entire cluster. Instead, Auto-WLM simply limits
the maximum number of queries allowed to use SQA resources at
once. This ensures that such cascading failures rarely occur.

Another important detail is the exact thresholds used for deter-
mining if a query is “short” or not. For example, imagine Alice is
an Amazon Redshift customer for whom a five second query is
considered short. But, for Bob, another Amazon Redshift customer,
a one second query is short. If the short query threshold is set to 5
seconds, Alice is happy, but all of Bob’s one second queries might
execute with 5 seconds of latency due to head-of-line blocking. On
the other hand, if the short query threshold is set to one second,
Bob is happy, but Alice’s short queries do not benefit from SQA
at all. Auto-WLM solves this problem with a simple heuristic: for
each cluster, we determine the 70th percentile execution time seen
each week and use that as the short query threshold. Of course,
this heuristic does not work for every customer, but it works for
the majority of the Amazon Redshift fleet.

For users that have relatively long short queries (e.g., for cus-
tomers where a short query can be defined as around 20 seconds),
Auto-WLM makes an additional optimization called Super Short
Query Optimization. The resources dedicated to SQA are split into
a small piece and a large piece. The small piece is used to execute
queries expected to take less than 5 seconds, and the large piece is
used to execute queries expected to take between 5 and 20 seconds.
This ensures that even for users with few short queries, very short
queries still execute with increased priority.

The final optimization built into SQA is useful in the scenario
where a cluster sees an exceptionally large number (say, hundreds)
of short queries waiting for long queries to finish. In this case, the
large number of short queries will be waiting for the SQA resources
while the cluster is busy executing long queries. When this sce-
nario is observed, Auto-WLM temporarily doubles the amount of
SQA resources available by borrowing resources from long-running
queries until the backlog of short queries is exhausted. This opti-
mization increases queue time of long queries marginally while

reducing the queue time for short queries by a large extent. Some-
times, this optimization leads to increase in execution time of both
long and short queries due to increased contention for CPU re-
sources, or if there are not enough short queries to justify the
doubling. Therefore, this optimization is restricted to be active no
more than 25% of the time.

4.2.2 Query placement & multiprogramming level. When a query
is ineligible for Short Query Acceleration, the query is added to the
queue, to be executed on either the main cluster or a concurrency
scaling cluster. The exact organization of this queue is described
in Section 4.2.3. Here, we will describe how Auto-WLM decides (1)
the cluster onto which to place an incoming query, (2) the multi-
programming level of each cluster, and (3) when to spin up or spin
down concurrency scaling clusters.

Placement. Auto-WLM uses a simple algorithm to place an in-
coming query onto a node: if there is an available slot with sufficient
resources on the main cluster, place it there. Otherwise, check for
an open slot with sufficient resources starting with the oldest con-
currency scaling cluster. This approach imitates a greedy first-fit
algorithm for the online bin packing problem. The main cluster and
the oldest concurrency scaling clusters are checked first so that as
the query workload gets smaller, other concurrency scaling clusters
can be released.

Multiprogramming levels. Each cluster has a certain number of
slots available for concurrent query execution. While many parallel
DBMSes use a fixed multiprogramming level (number of concur-
rent query executions), Auto-WLM uses an adaptive algorithm
to increase or decrease the multiprogramming level in response
to workload changes. Auto-WLM’s algorithm is similar to prior
work [45], and depends on Little’s Law, a fundamental theorem of
queuing theory. In terms of query execution, Little’s Law states:

𝐶 = 𝑇𝐸 (1)
where 𝐶 is the number of executing queries in a stationary system
(i.e., the distribution of the arrival rate of queries and the execution
time of queries is not changing), 𝑇 is the throughput of the system
(queries per minute) and 𝐸 is the average query execution time.

Using Equation 1, Auto-WLM can perform a what-if analysis
to find out if admitting another query will increase throughput.
To compute this, we assume that adding an additional query will
linearly slow down existing queries. Thus, if we admit one more
query with execution time 𝐸, we have a new number of executing
queries 𝐶′ = 𝐶 + 1 and a new average execution time:

𝐸′ =

(𝐶+1)
𝐶

𝐸 +𝐶
(
𝐸 + 1

𝐶
𝐸

)
𝐶 + 1

Of course, the assumptions behind the above what-if analysis are
valid only when cluster’s CPU resources are a limiting constraint
(e.g. we are in the linear slow down regime). While CPU resources
are normally the limiting constraint, if a cluster is constrained on
another factor, such as memory, the slow down could be super-
linear. Similarly, if the cluster is not constrained by any resource,
then there could be no slow down at all from adding an additional
query. Note that when resources are available, Auto-WLM will
admit the query.
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From 𝐸′, we can compute the throughput rate𝑇 ′ we would have
if we admitted the new query as:

𝑇 ′ =
𝐶 + 1
𝐸′

(2)

If 𝑇 ′ is higher than 𝑇 , we admit the new query by adding another
concurrent slot. Note that by Equation 2, we are more likely to
increase concurrency if the incoming query is short (because of the
factor of 𝐸 in the denominator). If we instead consider decreasing
the multiprogramming level, note that we can compute 𝑇 ′ in the
same way, except we can use actual observed latency over a time
window instead of predictor estimates.

Since we compute the hypothetical new throughput rate for an
increase in concurrency using estimated values, but compute the
hypothetical new throughput rate for a decrease in concurrency
using observed values, it is possible that both an increase and a
decrease in concurrency would seem to increase throughput. To
resolve this issue, we always prioritize decreasing the concurrency
level.

With this system, Auto-WLM is able to handle spikes of queries
immediately without causing long queuing delays. Unfortunately,
it is still possible that some medium-length queries with heavy
resource requirements can cause the system to live lock. This oc-
curs when there is a sudden shift from medium-running light-
weight queries to medium-running heavy-weight queries. Auto-
WLM checks this state by checking if any of the following condi-
tions are met: (1) current memory and CPU usage is high across all
clusters, (2) system concurrency is high across all clusters, and (3)
all currently executing queries appear to be medium-length. When
all of these conditions are true, Auto-WLM enters emergency mode.
In emergency mode, Auto-WLM switches to a purely shortest-job-
first scheduling policy using fixed concurrency levels. Once any
of the three conditions are false, Auto-WLM switches back into its
regular mode.

Elasticity. Auto-WLM is capable of handling many types of work-
load spikes via parallelism, but sometimes a query workload will
still exceed the cluster’s capacity. When a cluster begins to experi-
ence significant queuing (queries waiting for more than 𝛼 seconds),
Auto-WLM can spin up new concurrency scaling clusters and dis-
tribute queued queries to those clusters. This offers customers a
cost/performance trade-off: customers can (a) accept queuing and
thus lower performance, but see no cost increase, or (b) customers
can allow Auto-WLM to scale out, maintaining consistent perfor-
mancewhichmay increase costs. Once a concurrency scaling cluster
has been idle for a while (more than 𝛽 seconds), the extra cluster
is detached and the customer is no longer billed. We currently use
fixed values for 𝑎𝑙𝑝ℎ𝑎 (60 seconds) and 𝛽 (four minutes), which
have been determined through a set of experiments across the fleet.

4.2.3 Queuing. With an adaptive multiprogramming level and
concurrency scaling, significant queuing should be rare. However,
customers often restrict the maximum amount of concurrent re-
sources to control cost. Whenever concurrency is restricted addi-
tional queries may need to wait in the queue.

Auto-WLM’s solution to maintaining query performance in the
presence of heavy queuing is query prioritization. Auto-WLM sup-
ports six levels of user-specified priority: critical, highest, high,

normal, low, lowest. Auto-WLM picks queries to execute using a
weighted round-robin algorithm [5, 19]. Intuitively, the weighted
round-robin algorithm assigns each query a value proportional to
the query’s priority, and then selects a query by sampling from
the resulting probability distribution. Since every query has a non-
zero probability of being selected (even those with low priority),
Auto-WLM gets starvation control “for free.”

Preemption. The weighted round-robin algorithm works well
when queries with mixed priority are queued. However, if the clus-
ter is occupied by long-running low-priority queries and a high-
priority query arrives, the high-priority query will wait on the
low-priority queries. To remedy this, Auto-WLM supports preemp-
tion of lower priority queries: when a low-priority query is pre-
empted, the query is cancelled and re-queued to be executed later,
freeing up cluster resources for higher priority queries. Because
low-priority queries are cancelled, system resources are wasted —
imagine if a long-running low-priority query was cancelled seconds
before it completed. The entire computation must now be redone.
Auto-WLM deals with this issue in two ways.

First, a cool down period: when a low-priority query needs to be
preempted, Auto-WLM chooses the query with the longest remain-
ing execution time (based on the predicted execution time of the
query). If a preempted query begins to re-execute and is once again
selected for preemption, Auto-WLM enters a short “cool down”
period before preempting the query for a second time. Each time
a query is preempted, this cool down period increases exponen-
tially, ensuring that the query eventually has time to finish. Second,
long term guardrails: although the cool down period ensures that
any query will eventually get to complete, the total amount of
waste (time spent processing a query before it was preempted) is
still unbound across all queries. To ensure that the majority of a
cluster’s resources are not wasted, Auto-WLM employs waste-time
bounded preemption (WBP). Within a time window, WBP tracks
the total amount of wasted time𝑊 from preemption and the total
amount of useful work𝑈 from queries that completed. If the ratio
of wasted work to useful work 𝑊

𝑈
exceeds a threshold, Auto-WLM

stops preempting queries entirely.
By combining weighted-round robin scheduling with smart pre-

emption, Auto-WLM is able to provide intelligent query scheduling
while simultaneously ensuring liveness and a limit on the amount
of resources wasted via preemption. While Auto-WLM may not be
the optimal solution, we found the strategy of combining model
predictions with traditional heuristics to be effective for Amazon
Redshift. We believe that Auto-WLM strikes a great balance be-
tween pragmatism and innovation.

5 EXPERIMENTS
In this section, we experimentally evaluate the quality of Auto-
WLM’s decisions, along with the accuracy of Auto-WLM’s internal
query predictor. Specifically, we evaluate:

(1) Concurrency scaling (Section 5.1): How well can Auto-
WLM control the number of concurrent query executions
and maintain good query latency and throughput?

(2) SQA, short query acceleration (Section 5.2): How well
can Auto-WLM differentiate between short cheap queries
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and long expensive queries, and what impact does SQA have
on query latency?

(3) Bursting (Section 5.3): How well can Auto-WLM provide
linear scaling via concurrency scaling clusters?

(4) Predictor accuracy (Section 5.4: How accurate is Auto-
WLM’s query resource model, the core component used to
make intelligent decisions?

Unless stated otherwise, all experiments are conducted using a
four node Amazon Redshift cluster. Each node has 32 vCPU cores
and 244 GB of RAM (dc2.8xlarge). The cluster is configured to use
all four nodes as the base cluster. For workloads, we use a combina-
tion of TPC-DS at three different scale factors (1G, 100G, and 3T)
and data from the Redshift fleet. TPC-DS queries were generated
and executed using the open source Cloud Data Warehouse Bench-
mark2. All TPC-DS queries are run with 30 streams initialized with
different seeds. Redshift fleet data is taken from a sample of 10,000
clusters alive for at least three months as of October 1st, 2022.

5.1 Concurrency adjustment
One of the hardest parts of configuring an analytics database is
deciding how many queries to execute at once (the multiprogram-
ming level). If the multiprogramming level is set too low, cluster
resources are left underutilized, negatively impacting throughput.
If the multiprogramming level is set too high, queries will contend
with each other for scarce resources, negatively impacting latency.

Auto-WLM automatically selects a multiprogramming level for
the user’s cluster adaptively, as described in Section 4.2. To evalu-
ate the quality of Auto-WLM’s concurrency scaling decisions, we
evaluated three scales of TPC-DS at 50 different multiprogramming
levels (1 to 50). Here, we discuss results for multiprograming levels
5, 10, and 20, which are the three we found to be optimal at the
99th percentile for the tested TPC-DS scale factors.

The results are plotted in Figure 3. We plot average query la-
tency (Avg), along with the 50th, 90th, and 99th percentile of latency.
Note that a lower multiprogramming level is not always optimal
for overall query latency because of queuing: in the extreme case,
if only one query is executed at a time, the other queries will incur
large queuing delays. For each scale factor, Auto-WLM is able to
achieve optimal or near-optimal latency at each percentile. The
largest difference between Auto-WLM and a manual configuration
is in P99 latency for the largest workload, where Auto-WLM per-
forms significantly worse than MP20. This is because Auto-WLM
chooses to trade some tail latency for significantly improved me-
dian latency. Thus, Auto-WLM can automatically set an appropriate
multiprocessing level for workloads at multiple scales, relieving the
user from a complex and resource-intensive tuning process.

5.2 Short query acceleration (SQA)
Auto-WLM offers short query acceleration (SQA), a service that
automatically sends queries with low resource requirements and
low expected latency to a special, fast queue (the short query queue).
When a query is added to the short query queue, it will be executed
with a limited amount of resources. If a query in the short queue
does not finish in a short amount of time, the query is “timed out”
and placed in the main queue to be executed later.
2https://github.com/awslabs/amazon-redshift-utils/

TPC-DS 100G TPC-DS 3T

Count Percent Count Percent

Exec in SQA 4256 82% 898 16%
Timed out in SQA 126 2% 267 5%
Exec in long queue 938 18% 4772 84%

Table 1: SQA results for 100G and 3T scale TPC-DS. Incoming
queries are classified as either short or long. Long queries
are sent directly to the long queue. Short queries are first
placed in the SQA queue. If a query in the short queue times
out, it is moved to the long query queue. Percentages add up
to over 100% because queries that are mistakenly placed in
the short queue time out and are then fully executed in the
long queue. SQA has a low false-positive rate, erroneously
classifying only 2% and 5% of queries as short that should
have been classified as long.

Impact on query latency. By letting short queries access an ex-
clusive resource reservation, shorter queries can be executed first,
improving the latency of short-running queries. Figure 4 shows the
impact SQA has on the distribution of query latency for TPC-DS
100G. The 40th percentile improves by over 90%, while the maxi-
mum (P100) latency regresses by only 20%. Of course, whether or
not this trade-off is worthwhile depends on the user’s workload.
While we have not conducted a formal user survey, we know from
limited feedback that many users are happy with this option.

Short query classification accuracy. SQA relies on the query per-
formance model to predict whether or not a query will be short
running, and thus eligible for the short queue, or whether it will
be long running. If this model is accurate, Redshift will emulate a
shortest-job-first schedule, decreasing average latency. However,
if too many queries are erroneously placed in the short queue,
resources will be wasted executing, timing out, and re-executing
mispredicted queries in the long queue. Thus, it is critical that
only queries that are truly low-resource and low-latency are placed
in the short query queue. To measure this, we executed TPC-DS
100G and 3T3 and recorded the number of queries placed into the
short queue that fully executed and the number that timed out.
The results are displayed in Table 1. For TPC-DS 100G, Auto-WLM
only misclassified 2% of queries as short-running that were truly
long-running, which means that only 126 queries needed to be
re-executed in the long queue after being timed out. For TPC-DS 3T,
the false positive rate of the short query classifier was 5%, resulting
in 267 re-executions.

Overall, we conclude that Auto-WLM’s classifier is sufficiently
accurate to differentiate between long and short running queries in
a way that reduces latency for short running queries. We more fully
evaluate the accuracy of Auto-WLM’s predictor in Section 5.4. Auto-
WLM’s SQA functionality provides users with an easy and automatic
way to reduce query latency for workloads by prioritizing short-
running queries.

3We do not report results on TPC-DS 1G, because nearly every query could be executed
in the short queue.
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Figure 3: Auto-WLM concurrency scaling compared with 4 different manual concurrency levels for three different TPC-DS
scales. MP5, MP10, and MP20 represent fixing the multiprogramming level to a specific value. Auto-WLM dynamically selects
the multiprogramming level. Latency is normalized to the largest value in each plot. Average latency, median latency (P50), the
90th percentile (P90), and the 99th percentile (P99) of query latency are shown. While the optimal multiprogramming level is
difficult to determine, Auto-WLM is able to automatically choose a multiprogramming level that is optimal or near-optimal for
each scale factor.
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Figure 4: Distribution of query latency for TPC-DS 100G with
and without SQA. When SQA is enabled, queries predicted to
be short-running are placed into a special queue. This results
in a decrease in latency for short running queries, but an
increase in tail latency.

5.3 Elasticity
Next, we evaluate the elasticity component of Auto-WLM. When
configured to do so, Auto-WLM will spin up new concurrency
scaling clusters to accommodate a spike in the queryworkload. Each
cluster’s multiprogramming level is managed by Auto-WLM, and
queries are distributed based on each cluster’s available resources.

Figure 5 compares the throughput of Auto-WLM with a manual
baseline, which uses uses a fixed number of concurrent clusters (0
to 10) at any point in time and a fixed multiprogramming level of
10. Formanual, each incoming query is executed on the first cluster
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Figure 5: Behavior of Auto-WLM concurrency scaling com-
pared to a manual baseline for TPC-DS 100G. The x-axis rep-
resents the maximum number of concurrent clusters Auto-
WLM is allowed to create (with zero meaning that horizon-
tal concurrency scaling is disabled). The left plot shows the
throughput of the cluster, which increases as the number
of allowed concurrency scaling clusters increases. The right
plot shows the total number of queries assigned to concur-
rency scaling clusters at each configuration.

with an available slot (if no slots are available, the query waits in
the queue). The main cluster is considered the “first” cluster.

When a small number of concurrency scaling clusters are avail-
able (less than 6), Auto-WLM efficiently manages the multipro-
gramming level on each cluster to maximize throughput, achieving
significantly higher throughput than the manual baseline. Once a
large number of concurrency scaling clusters are available (more
than 8), the performance of both approaches are comparable: once
enough concurrency scaling clusters are available, both approaches
essentially spread out queries evenly. Thus, Auto-WLM can achieve
significantly more throughput with fewer clusters (and thus lower
cost) than our manual baseline.
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Figure 6: Absolute error comparisons between theAuto-WLM
query predictor (left) and simple linear regression with op-
timizer cost (right). Mean absolute error (MAE), median ab-
solute error (P50), and 90th percentile absolute error (P90)
are plotted. Note the log scale. Auto-WLM predictions are
significantly better than linear regression on optimizer cost,
especially in the tail.
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Figure 7: A direct comparison of 90th percentile absolute
error between the Auto-WLM predictor and linear regression
with a cost model. Bars here are at absolute scale compared
to those on a log scale in Figure 6.

5.4 Predictor accuracy
In this section, we evaluate the performance of Auto-WLM’s in-
ternal query performance model, or query predictor. Almost all
of Auto-WLM’s features are dependent on accurate query perfor-
mance modeling, which is known to be a difficult task. In addition,
Auto-WLM’s trains its predictor on the user databases, requiring
that both the training and inference procedure be cheap to execute;
typically, Auto-WLMmodels provide sub-millisecond inference and
train in only a few dozen milliseconds. As a result, comparing the
performance of Auto-WLM’s model accuracy to heavyweight tech-
niques like QPPNet [31] or TCNNs [34] is not appropriate. Instead,
we compare the accuracy of Auto-WLM’s predictor with a simple
linear regression against the optimzer’s cost model.

Here, we depart from using TPC-DS data. Since TPC-DS only
contains 99 query templates, learning their execution time is trivial.
Instead, we evaluate Auto-WLM’s predictor on a set of 5 million
queries sampled from Amazon Redshift clusters. The results are
plotted in Figure 6. We split our analysis between five different
query latency “bins”. This is critical because the vast majority of
queries are short: if one were to train a naive model across all the
data, one could achieve seemingly-reasonable accuracy by simply
guessing the median. Across each bin, we report the mean absolute
error (MAE) along with the median (P50) and 90th percentile (P90)
of absolute prediction error. For queries with latency between one
and two minutes, the Auto-WLM predictor has a median error of 20
seconds, compared to the optimizer cost regression with a median
error of 55 seconds.

We plot the 90th percentile errors for each bucket without a log
scale in Figure 7. Here, the relationship between query runtime and
error is clear: longer queries are “harder” to predict (i.e., exhibit
higher prediction error). For queries taking longer than fiveminutes,
Auto-WLM’s predictor has a 90th percentile error of around 1000
seconds, which for many queries is longer than their runtime. Other,
more advanced query performance prediction models could provide
better accuracy, especially at the tail, but often require significant
larger inference time (see also Section 6)

Taken as a whole, Auto-WLM’s predictor has reasonably low
error across the Amazon Redshift fleet (e.g., the “All” column in
Figure 6). As we have shown in previous sections, these predictions
are of suitable accuracy for many applications and improvements
to the predictor’s accuracy should only make such downstream
tasks more efficient. Thus, while Auto-WLM’s predictor might not
have perfect accuracy, the predictor is able to sufficiently differentiate
between queries for our applications.

6 LESSONS LEARNED AND HOW THE
RESEARCH COMMUNITY CAN HELP

While there have been hundreds of ML for systems papers over the
last few year, to the best of our knowledge, Auto-WLM is one of the
first ML-enhanced component deployed in a large-scale customer-
facing data-warehouse services, which goes beyond logical-tuning
(e.g., index or materialized view recommendation). While building
Auto-WLM we not only learned several valuable lessons on how
to make ML-enhanced components actual work, but also found
a significant gap in what academic papers address and what is
required in practice. In the following, we describe several of these
lessons and outline research directions we believe are currently
under-served.

6.1 Global vs. local training and transferable
models

Currently, Auto-WLM uses exclusively locally-trained models: each
cluster trains its own performance model using the cluster’s work-
load as a training set (see Section 4.1). Unfortunately, this creates a
cold-start problem for new customers or clusters; we do not have
a model before sufficient local training data exists. The obvious
solution is that we should build transferable and/or zero-shot mod-
els [16] by training the models globally across clusters. Not only
would one expect that those models would be far superior as more
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training data is used, but that they would also solve the cold-start
problem. Yet, to our surprise, the globally trained models performed
significantly worse than our locally trained models.

We believe that this can be explained by the fact that the global
model can at best learn a good (transferable) cost model but is not
able to learn anything about the data of the individual clusters –
in other words, the global model is unable to “instance optimize”
to any one database. Intuitively, this is because learning a query
latency predictor for any specific database with a fixed workload is
easier than learning a query latency predictor for every database.
While a more precise cost model can help with better predictions,
it is entirely over-shadowed by what the local models are able to
learn about the data and workload to make better estimates. This
is also in line with the recent work [38, 39].

Finally, we observed some promising results on training deep
learning models locally. A locally trained deep learning model was
able to outperform decision tree models, especially on long-running
queries that had not been previously seen. However, we note that
(1) deep learning methods had far too much overhead to be used
in Auto-WLM, and (2) query workloads tend to be highly repeti-
tive: over the entire Amazon Redshift fleet we observed that up to
75% of all queries have been seen before. Boosted decision trees
are great at memorizing previously seen queries and provide just
enough generalization for the unknown queries to make them work
surprisingly well.

Where does this leave us? Are the more advanced deep learning-
based methods all academic and not practical? Based on our obser-
vations so far, we believe the impact of transferable data-independent
cost models will be limited. At the same time, training data- and
workload-dependent query time prediction models or cardinality-
correction models (as proposed in [39]) show the most promise but
might be too expensive to train for each individual cluster. Un-
fortunately, data-dependent but workload-independent models (e.g.,
learning data statistics independent of the workload) appear to be
the worst of both worlds as they waste a lot of model capacity on
data properties, which might not be relevant - recall that workloads
at least on Amazon Redshift tend to be highly repetitive.

Hence, we believe the most impactful area of research is in tech-
niques which allow to quickly adapt and efficiently learn the most
important data characteristics and performance characteristics for
the most common query patterns, in a low-overhead way. While
queries are not necessarily exactly the same, it is very rare that a
query contains, for example, a never-observed join path. Similarly,
training global models, which are then locally refined might be an
option, though initial experiment show that the “refinement” in
some cases almost takes as long as training from scratch.

6.2 Inference time, model size, and one-size
doesn’t fit all

In theory, a single model should be able to predict the query latency
and resource requirements for each query. However, in practice
it is not only hard to build a single model which does it all, but
one large model is also unlikely to meet the inference and training
performance requirements. We observed that the majority of all
queries are short running and take under 10s. For short running
queries, a complex neural-net based model would add CPU and

latency overhead. Particularly for dashboard queries, which often
run under 1s, this poses a significant challenge.

Thus, we suggest that the academic research community should
not only focus on building themost accuratemodels, but also closely
consider resource overhead and latency. It is simply not enough
to show that a model improves q-error or average query latency,
which is often dominated by the long-running queries. We must
also carefully consider that each query-class (e.g., short-running
dashboard queries) are not negatively impacted. One of the easiest
ways to do this is to test the end-to-end impact of a predictor on a
system – that is, instead of simply measuring prediction accuracy,
integrate the predictor into a database component and measure the
increase (or decrease) in actual performance. One potential solution
to the problem is to combine different type of models and to train
(simpler) models for specific tasks.

6.3 The long-tail, fall-backs, and guardrails
Many recent papers about ML-enhanced components [20, 28, 54]
demonstrate how overall performance improved at the cost of very
few regressions in the long tail. Unfortunately, at the scale of Ama-
zon Redshift even a few regressions might significantly impact a
large group of customers. Generally speaking, this is not a reason
that a technique should not be deployed, as it is rarely the case that
one technique is strictly superior to another (e.g., if a new technique
improves most queries but regresses a few, then all the improved
queries may be considered “pre-regressions” in the current system).
However, it is important to determine upfront how the regressions
are handled; a question often ignored by the academic community.

For example, is it possible to detect the regressions and gracefully
fall-back to the pre-existing behavior? This leads to a different set
of research questions such as: what guardrails can be added to avoid
the worst-case behavior? What statistics and tools can we give the
support team to debug the model and algorithm decision? How can
the operational team override the policy if needed? Unfortunately,
it is not always easy to add such protection methods – but without
at least some protection, it is essentially impossible to deploy any
ML-enhanced component.

6.4 Explainability
Related to the previous argument, making the decisions of an auto-
mated or ML enhanced system explainable is in many cases criti-
cally important. For example, concurrency scaling decisions have
a direct impact on the cost for customers and customers want to
know that they are charged correctly. As long as everything works
as expected, most customers do not care about the individual deci-
sions. However, when something goes wrong (e.g., cost increases,
or a concurrency scaling cluster is not created), we need insights
into why a decision was made and a direct way to fix it.

6.5 TPC-X workloads are not representative
While not a big secret, most existing benchmarks are far from being
representative of what we observe in real workloads. Queries are
more diverse across clusters, more repetitive, have workload peaks
and troughs, consist of mixed workloads (e.g., ETL, dashboarding,
and exploration queries) and contain a significant number of writes,
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among other features missing in benchmarks. While Amazon Red-
shift uses TPC-X workloads as sanity checks, it is unclear if TPC-X
is even representative for a single customer workload beyond proof-
of-concept evaluations. While there has been some recent attempts
to create more realistic benchmarks [3], much more work is needed.

Addressing this problem will require creative solutions between
industry and academia. For example, we need new techniques
which help to replicate anonymized workloads (not data), which
customers and cloud providers accept. Are there ways to create
and share benchmarks that does not require one to share data,
queries, or schema? This requires research into methods to create
a synthetic workload and data set, which mimics the performance
characteristics of the original database. This should be much easier
than differential privacy, which many in the industry often are not
comfortable with.

6.6 Simplicity over Complexity
While reinforcement learning is extremely powerful and has shown
to yield impressive results [25, 44], it is also very complex and hard
to get right. Thus, at Amazon Redshift, we always start with the
simplest models and heuristics and iterate quickly before trying the
state-of-the-art, often highly complex, techniques. For example, our
approach so far has shown that even simple decision trees are able
to achieve sufficient performance for many applications, all while
being significantly simpler and lower overhead than tree convolu-
tion networks [28, 34]. Hence, we urge the research community,
especially future reviewers, to value simplicity over unnecessarily
complex solutions, which tries to squeeze out the last bit of accuracy
often at the cost of never being really usable.

6.7 Synergy effects
In SageDB [22], we proposed that the same type of models will be
shared across components. While originally just a vision, this is
already becoming reality at Amazon Redshift. Models are shared
across Auto-WLM and other ML-enhanced components (e.g., Auto-
matic Materialized View creation). Obviously, this has enormous
advantages in regard to training cost and development time.

These synergies also opens up new opportunities and challenges.
For example, not every component uses the model’s output in the
same way. This rarely matters if the model would be perfect, but
does matter with errors as they are often not uniformly distributed.
One component might only case if a query is short or long running,
another cares only about the accuracy of repetitive long-running
queries, another only about very large data lake queries, and so
on. So far, the research community focused mainly on improving
separate ML-enhanced components, leaving out many of the in-
teresting research challenges which exist when models are more
broadly used within a system.

7 CONCLUSION
Auto-WLM uses machine learning models to provide automatic
scheduling, horizontal scaling, and admission control for Redshift
users. Auto-WLM is deployed in production and schedules every
single query on Amazon Redshift. Future work will focus not just on
more advanced ML techniques, but also on systematic integration
of models across the Amazon Redshift platform.
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