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Abstract
We present a new non-discrete algorithm that quickly approxi-

mates a median filter. This new algorithm proves to be faster than
our implementations of many other fast median filter algorithms.

1 Introduction

Median filters can greatly reduce noise in an image, but are computationally
expensive [10]. Fast median filter algorithms are required for batch image
processing and real-time filtering.

Many have shown that fast median filter algorithms can be constructed
through histogram manipulation [5, 11, 9]. These algorithms assume that
data can be discretized into histogram bins, which is true for standard 8-bit
images. However, many applications, such as computed tomography, utilize
floating-point data [6]. Others have shown that efficient sorting mechanisms
for small sets or statistical techniques can lead to fast results of varying
accuracy [3, 7].

We present a median filter approximation algorithm that does not require
data to be discretized. This algorithm performs favorably compared to other
approximation algorithms, and has known error bounds.
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2 Algorithm

Narendra demonstrated that applying a one-dimensional median filter across
the rows and columns of an image can quickly produce accurate results [8].
However, giving special attention to various properties of the median function
itself can yield an even faster algorithm. By combining the techniques of
Narendra [8] and Huang [5], one can achieve faster results by exploiting data
overlap.

The new algorithm, named DP, is outlined in algorithm 1 for a 3x3 (W =
3) median filter. Note that Ii,j refers to the pixel in the ith row and jth
column, with I0,0 representing the upper left hand corner of the image.

DP is similar to Huang in that DP moves a kernel1 across an image
by row from left to right and preserves data between each kernel. Unlike
Huang, DP does not maintain a histogram, but rather the median values of
w − 1 columns. When progressing the kernel by one column, DP discards
the median value of the previous leftmost column and calculates the median
value of the new rightmost column. The median value of the kernel is then
approximated by taking the median value of the column medians.

Table 1a represents the initialization step for each row in which the me-
dian of the first and second columns are calculated and stored into col1 and
col2, respectively. This step occurs once at the beginning of every row. Table
1b shows how the first kernel is fully calculated by finding the median of the
third column, stored into col3, and then finding the median of the medians
(which is the median of the set {col1, col2, col3}). Table 1c shows how the
kernel moves over to the next column: the value of col2 is placed into col1,
the value of col3 is placed into col2, and the median of the new rightmost col-
umn is stored into col3. The median value of the kernel represented in table
1c is once again calculated by finding the median of the set {col1, col2, col3}.

While DP is not guaranteed to find the exact median of a given kernel,
it is guaranteed to find a value near the median. The exact accuracy of DP
is discussed and proven in the next section.

3 Accuracy

The accuracy of DP depends upon the size of the kernel used for filtering.
We assume a WxW square. While the DP algorithm will work with any

1Many sources use the term ”window” instead of ”kernel.”
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Algorithm 1 The DP algorithm for median filter calculations

function DP(Image I, Image I ′)
for i = 1→I.HEIGHT − 1 do

col1← median([Ii−1,0, Ii,0, Ii+1,0])
col2← median([Ii−1,1, Ii,1, Ii+1,1])
for j = 1→I.WIDTH − 1 do

col3← median([Ii−1,j+1, Ii,j+1, Ii+1,j+1])
I ′i,j ← median([col1, col2, col3])
col1← col2
col2← col3

end for
end for

end function

0 1 2 3 4
0 1 2 * * *
1 1 2 * * *
2 1 2 * * *
3 * * * * *
4 * * * * *

(a) For the first kernel of
row 1, calculate the me-
dian of the first column
and the second column

0 1 2 3 4
0 1 2 3 * *
1 1 2 3 * *
2 1 2 3 * *
3 * * * * *
4 * * * * *

(b) Calculate the median
of the right-hand column
and then calculate the
median of the 3 column
medians. This approxi-
mates the median of I1,1

0 1 2 3 4
0 * 1 2 3 *
1 * 1 2 3 *
2 * 1 2 3 *
3 * * * * *
4 * * * * *

(c) For the kernel cen-
tered at I1,2, calculate
the median of the right-
hand column and then
calculate the median of
the 3 column medians

Table 1: An illustration of the steps in DP for a 3x3 kernel
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arbitrary kernel (even ones that are not square), the proofs presented here
consider only square kernels of odd side length (W is odd)2.

DP may not find the exact median of every kernel, but it will find a value
within known bounds. If L represents the sorted values of a given kernel,
DP will find a value between the αth element of L and the βth element of
L, where

α =
(W + 1)2

4
− 1 (1)

β = W 2 − α =
(3W − 1)2

12
+

2

3
(2)

3.1 Proof of accuracy

In order to prove this constraint, we define the median of an ordered (as-
cending) set of elements A = {A0, A1, ..., An} as

median(A) = Abn
2
c. (3)

We define the median of any set S as the median of the ordered (ascending)
set containing the same values as S.

Lemma 1 follows immediately from this definition.

Lemma 1. The median element in a distinct-valued set S of size n is greater
than at least

⌊
n
2

⌋
other members of S.

Proposition 1 (Median of medians). If M is an indexed set such that Mi is
the median value of the set mi, with all mi having distinct values3 and equal
cardinality, then the median of M is greater than and less than h members
of
⋃
m, where h =

⌊ |M |
2

⌋⌊ |m0|
2

⌋
+
⌊ |m0|

2

⌋
+
⌊ |M |

2

⌋
.

Proof. LetG be the set of allmi such thatmedian(mi) is less thanmedian(M).

G = {x | x = mi ∧median(x) < median(M)}

By Lemma 1, median(M) is greater than at least
⌊ |M |

2

⌋
other elements

of M .

2In practice, W is almost always odd so that there is an exact center of the kernel [4].
3Note that all mi have distinct values from each othe.r
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|G| ≥
⌊
|M |

2

⌋
(By Lemma 1)

By Lemma 1, the median of Gi is greater than at least
⌊ |Gi|

2

⌋
members of

Gi.

∀i
(
|{x | x ∈ Gi ∧ x < median(Gi)}| ≥

⌊
|Gi|

2

⌋)
(By Lemma 1)

Because inequalities are transitive, any value that is less than median(Gi)
is also less than median(M).

∀i (x ∈ Gi ∧ x < median(Gi)→ x < median(M)) (By transitivity)

Thus:

1. median(M) is greater than at least
⌊ |M |

2

⌋
members of M (by Lemma

1),

2. Each of those members of M are greater than at least
⌊ |Gi|

2

⌋
members

of some Gi (shown above),

3. Since median(M) is itself the median of some mi, median(M) is greater

than at least
⌊ |mi|

2

⌋
members of that mi (by Lemma 1).

Therefore, median(M) is greater than at least
⌊ |M |

2

⌋⌊ |m0|
2

⌋
+
⌊ |m0|

2

⌋
+
⌊ |M |

2

⌋
members of

⋃
m.

|{x | x ∈
⋃

m ∧ x < median(M)}| ≥
⌊
|M |

2

⌋⌊
|m0|

2

⌋
+

⌊
|m0|

2

⌋
+

⌊
|M |

2

⌋
It follows immediately thatmedian(M) is also less than at least

⌊ |M |
2

⌋⌊ |m0|
2

⌋
+⌊ |m0|

2

⌋
+
⌊ |M |

2

⌋
members of

⋃
m.
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Table 2: Sample α and β values for popular median filter kernel sizes

Kernel size α β Max index error
3x3 3 6 1 in 9
5x5 8 17 4 in 25
7x7 15 34 9 in 49

Algorithm 1 finds the median of W values, where each value is itself
the median of W other values. Thus, proposition 1 can be applied with
|M | = |m0| = W . Note, however, that the proof above assumes that all
values are distinct. While this is not the case in practice, the same logic still
applies. Proposition 1 means that the median value selected by algorithm 1
for a pixel Ii,j will be greater than and less than h of pixel Ii,j’s neighbors.
Note that:

h =

⌊
|M |

2

⌋⌊
|m0|

2

⌋
+

⌊
|m0|

2

⌋
+

⌊
|M |

2

⌋
=

⌊
W

2

⌋2
+ 2

⌊
W

2

⌋
. (4)

And when W is odd:⌊
W

2

⌋2
+ 2

⌊
W

2

⌋
=

(
W − 1

2

)2

+ 2
W − 1

2
=

(W + 1)2

4
− 1 = α (5)

Since the selected value for a given pixel must be greater than at least α
of its neighbors and less than at least α of its neighbors, the selected value’s
index in the ordered list L is between α and W 2 − α = β. �

Values for popular median filter kernel sizes are shown in table 2.

3.2 Distribution

Although the distribution of the index selected as the median by DP will
vary with data, testing DP with randomly generated images suggests that
the value selected is not uniformly distributed between α and β. Figures
1a, 1b, and 1c show the distribution of the selected index for n = 100000
samples.

Figure 1d shows the cumulative error probability of the 7x7 median filter.
The graph also shows a normal cumulative density function with µ = 1.0364
and σ = 1.4169. In the 7x7 case (with random image data), table 3 shows
that DP selects a value within one index of the median 51.9% of the time.
DP selects a value within 4 indexes of median 96.2% of the time.
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Figure 1: Distributions for various kernels

(a) 3x3 distribution (b) 5x5 distribution

(c) 7x7 distribution (d) 7x7 cumulative error distribution

Table 3: Cumulative error probabilities for 7x7 filter

Index error ≤ Probability
0 0.204
1 0.519
2 0.755
3 0.895
4 0.962
5 0.989
6 0.997
7 0.999
8 0.999
9 1.000
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Table 4: Benchmark data of several median filter algorithms on an AMD
Opteron 6168 (8-bit images)

Size Bubble Huang Perreault and Hebert DP Dong Narendra
50002 1.364s 5.693s 7.959s 0.46s 3.598s 0.653s
40002 0.868s 3.628s 4.981s 0.295s 2.317s 0.407s
30002 0.492s 2.043s 2.749s 0.168s 1.295s 0.231s
20002 0.219s 0.900s 1.189s 0.069s 0.568s 0.094s
10002 0.057s 0.225s 0.290s 0.018s 0.057s 0.024s

4 Performance

An implementation of the DP algorithm written in C was benchmarked
against several other median filter implementations using a 3x3 kernel. Raw
timings are shown in table 4 and graphed in figure 2.

The bubble algorithm is a hard-coded bubble-sort approach presented by
Kopp and Purgathofer [7]. Huang’s algorithm consists of a moving histogram
kernel [5]. Perreault and Herbet present a variation of Huang’s algorithm that
only accesses each pixel once[9]. DP is the algorithm discussed in this paper.
This implementation of Dong’s algorithm [3] is slightly modified to produce
results within the same bounds as DP using the sign test method. Narendra’s
algorithm involves a 1D median filter that can be used to approximate a 2D
median filter [8].

As the bubble algorithm, Huang, and Perreault and Herbet are exact
median filters that calculate the precise median of a pixel’s neighborhood,
comparisions to the DP, Dong and Narendra approximation algorithms are
far from fair. It is also worth noting that the performance of the bubble
algorithm decreases quickly and substantially as kernel size increases.

The performance of DP compares favorably to all other algorithms tested,
although there are several other approximation algorithms not considered in
this paper [2, 1, 12].

5 Conclusion

We have presented a new median filter algorithm that performs favorably
compared to many preexisting algorithms. Unlike many of such algorithms,
DP does not require data to be discretized or otherwise placed into a his-
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Figure 2: A graph of table 4

togram. While DP is not completely precise, the error bounds of DP are well
defined, proven, and small enough for many applications.
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