
An Efficient Algorithm and Monte Carlo
Methods for Inferring Functional Dependencies

Ryan Marcus
ryan@rmarcus.info

Shaughan Lavine
shaughan@arizona.edu

Department of Philosophy
University of Arizona

May 26, 2014

Abstract

We present a formalization of functional dependencies that enables
a greedy algorithm for set cover approximations to efficiently find func-
tional dependencies within databases. This algorithm is augmented
with Markov chain Monte Carlo methods. The result is an algorithm
capable of performing fast automated data analysis on large databases.

1 Introduction

Finding functional dependencies within data can be useful for table decom-
position and gaining insight into the data [3]. Unfortunately, inferring func-
tional dependencies within data can be difficult [3]. Most algorithms use a
sort-based or hyper-graph-based approach [6]. However, Akutsu et al. have
developed a set-cover based approximation [1] algorithm for functional de-
pendency inference that we expand upon (and formulate slightly differently).

The scale of many real-world databases indicates that Monte Carlo sam-
pling techniques could be useful. In the past, such techniques have only been

1

used to form functional dependency hypotheses that are then checked against
the entirety of the data [6].

Here, we present a fast Markov chain Monte Carlo approach for proba-
bilistic sampling and determining of functional dependencies that hold with
high probability based in part on the GREEDY algorithm [1] presented by
Akutsu et al.

Let databases be sets of tables, and let a table be a finite indexed set
of rows. Rows in a table t are finite indexed sets with indexes contained in
C(t). The cardinality of any row in table t is equal to the number of columns
(arity) of table t. The cardinality of t (denoted |t|) is the number of rows
in table t. The function C(t) gives the set {1, ..., n} of column indexes of t,
where n is the arity of t.

When t is a table, the value ti is the ith row of t for i = 1, ..., |t|, and the
value ti,j is the data in the ith row and jth column of the table t. When h
is a set of column indexes such that h ⊆ C(t), then tih is a set containing ti,j
for all j ∈ h.

The algorithm presented in this paper and by Akutsu et al. expresses
the problem of detecting functional dependencies as a set cover problem and
approximates a solution to that set cover problem using algorithm 1 [1]. We
prove in the next section that this algorithm will find, for any column y of
a table t, a set X of columns of t such that {y} functionally depends on X
and such that X is inclusion-minimal among such sets (that is, such that
{y} does not functionally depend on any proper subset of X), assuming that
such an X exists. If no such X exists, the algorithm will properly report that
{y} does not functionally depend on any column in t besides itself. When
such an X exists, the set X is a good approximation to a smallest set such
that {y} functionally depends on it. Then, in section 3, we give a simple
Markov-chain based method of accelerating this algorithm.

2 Set cover approximation

2.1 Expressing functional dependencies

When X ⊆ C(t) and Y ⊆ C(t), we say that the columns of t indexed by Y
are functionally dependent on the columns of t indexed by X if

∀ti, tj ∈ t(tiX = tjX → tiY = tjY). (1)

2

This is equivalent to stating that some function F : U → V exists where
U is the set {tiX | 0 < i < |t|} and V is the set {tiY | 0 < i < |t|} such that
∀ti ∈ t(F (tiX) = tiY). This motivates the term functional dependency [3].

Equation 1 is equivalent to:

∀ti, tj ∈ t(tiY 6= tjY → tiX 6= tjX) (2)

2.2 Finding functional dependencies with set covers

2.2.1 The Algorithm

The set cover problem is as follows: Given a universe U and a set S of
subsets of U such that the union of the members of S equals (that is, covers)
U , find a minimal-cardinality α ⊆ S such that the union of α equals (covers)
U . Say that a set α is inclusion minimal if α covers U and no proper
subset of α covers U . The set cover problem has been shown to be NP-
complete [2]. However, a greedy approximation to the set cover problem
can find, in polynomial time, at least one inclusion-minimal subset of S that
covers U .

For a given U and S, the standard greedy approximation of the set cover
problem is given in algorithm 1 [4]. It has been shown that this algorithm

Algorithm 1 The standard greedy approximation of the set cover problem

α← {}
while |U | > 0 do

λ← the member of S such that λ ∩ U is maximized
U ← U − λ
α← α ∪ {λ}

end while

achieves an approximation ratio of H(|U |), where H(n) is the nth harmonic
number and |U | is the cardinality of U [4]. Note that |U | < |t|2.

To express the task of finding X given y as a set cover problem, let U be
the indexed set of pairs (ti, tj), i < j, of rows of table t that have differing
values in the column indexed by y. Let Si be the set of pairs (tk, tm) ⊆ U ,
k < m, of rows of table t that have differing values in the column indexed by
i, where i 6= y. Formally,

U = {(ti, tj) | ti,y 6= tj,y ∧ 0 < i < j < |t|} (3)

3

∀i ∈ (C(t)− {y})Si = {(s, p) | (s, p) ∈ U ∧ si 6= pi} (4)

Note that, while S is a set in the traditional phrasing of the set cover problem,
this algorithm represents S as an indexed set.

Let α be, if one exists, an inclusion-minimal subset of S that covers U .
Note that each member of α is equal to Si for some i. Let the set β be the set
of the indexes into S of each element of α, that is, ∀i((Si ∈ α)→ (i ∈ β)). In
the next section we show that the union of all columns indexed by members
of β determines {y} (that is, a function F exists such that F (tiβ) = ti,y
for all i), or, if no cover exists (there is at least one member of U that is
not a member of any Si, and thus no α exists), then {y} is not functionally
dependent on any combination of columns other than itself. Since there may
be many such inclusion-minimal subsets, this implementation will find only
one such inclusion-minimal subset (this complication will be discussed later).

The algorithm presented here will find functional dependencies between
a set of columns indexed by X ⊂ C(t) and a set containing the single column
indexed by y with y /∈ X, if such a functional dependence exists. One possible
implementation of this algorithm that finds a inclusion-minimal X such that
{y} is functionally dependent on X is given in algorithm 2. Note that if no
functional dependence exists, this implementation returns the empty set.

2.2.2 Running time

Loops L1 and L2 take a maximum combined time of O(r2). L3 can run
at most c times, because after all columns have been used, the algorithm
terminates. L4 can run at most c times, because it is iterating over columns.
L5 can run at most r2 times, because U is bounded by r2. Therefore, L3,
L4, and L5 run in O(c ∗ c ∗ r2) = O(c2 ∗ r2) time, where c is the number of
columns and r is the number of rows.

2.2.3 Proofs

We can derive the formulation of the problem of finding functional depen-
dencies as a set cover problem from equation 2. Define the function τ as:

τ(X, y) = {ti | ∀j((tiX = tjX)→ (ti,y = tj,y))} (5)

4

Algorithm 2 A possible implementation

U ← {}
for i = 0→ |t| do . L1: Calculate the entire universe

for j = i→ |t| do . L2
d← ti
f ← tj
if dy 6= fy then . Test if the rows differ

U ← U ∪ {(ti, tj)} . Add to universe
end if

end for
end for
α← {}
Z ← C(t)− {y}
while |U | > 0 do . L3

S ← [] . Construct S with only uncovered elements
for x ∈ Z do . L4

κ← {}
for (i, j) ∈ U do . L5

if ix 6= jx then
κ← κ ∪ {i, j}

end if
end for
S.append(κ)

end for
if |S| = 0 then return None . No function exists
end if
next ← max(S) . the highest-cardinality member of S
U ← U − {next}
Z ← Z − argmax(S) . where argmax is the index of the max
α← α ∪ argmax(S)

end while
return α

5

where t is a fixed table, X ⊂ C(t), y ∈ C(t), and y /∈ X. In other words,
τ(X, y) is the set of rows where X determines {y}. Note that if τ(X, y) ⊆ t
and ∀i(ti ∈ τ(X, y)), then X determines {y} in table t.

Proposition 1. If τ(X, y) = r1 and τ(Z, y) = r2 then τ(X ∪Z, y) = r1 ∪ r2.

Proof.

∀ti, tj ∈ r1(ti,y 6= tj,y → tiX 6= tjX) (By equation 2)

∀ti, tj ∈ r2(ti,y 6= tj,y → tiZ 6= tjZ) (By equation 2)

∀ti, tj ∈ r1 ∪ r2(ti,y 6= tj,y → tiX∪Z 6= tjX∪Z)

τ(X ∪ Z, y) = r1 ∪ r2

It is immediate from proposition 1 that, by induction:

Proposition 2.
⋃
{τ(x, y) | x ∈ X} = τ(X, y).

Next, let τ ∗(X, y) be the indexed set of all the elements of τ(X, y)×τ(X, y)
in which the first element of each pair precedes the second element of each
pair in the table. Note that idx(u, v) is the index of u in the indexed set v,
and idx(u, v) is undefined if u /∈ v.

τ ∗(X, y) = {a | a ∈ (τ(X, y)× τ(X, y)) ∧ idx(a1, t) < idx(a2, t)} (6)

Lemma 1. A pair of rows is only in Sx if the pair of rows: do not match
on column x, do not match on column y, and the first row comes before the
second row in t.

Proof. By equation 4, a pair of rows is only in Sx if the pair of rows do not
match on column x and the pair of rows is in U .

By equation 3, a pair of rows is only in U if the rows do not match on
column y and the first row comes before the second row in t.

Proposition 3. Sx = τ ∗({x}, y) ∩ U

Proof. By equation 6, any row in a pair of rows in τ ∗({x}, y) must be in
τ({x}, y) and the first row of every pair must come before the second row in
the table.

6

By equation 5 and 2, τ({x}, y) contains every row such that if any two
rows differ on column y, they must differ on column x.

By equation 3, all pairs of rows in U differ on column y. Thus, all pairs
of rows in τ ∗({x}, y) ∩ U differ on columns x and y.

Thus, τ ∗(t, {x}, y)∩U contains all pairs of rows for which the rows differ
on columns x and y and the first row in each pair comes before the second
row in the table.

By lemma 1, Sx = τ ∗({x}, y) ∩ U .

From these propositions, we can prove that algorithm 2 computes func-
tional dependencies as claimed.

Proof. After the initial construction of U , each iteration of L3 will construct
a set S such that Si ∪ U ⊆ τ ∗(C(t)i, y) (by proposition 3). We add mem-
bers of C(t) to α until U = ∅. Assuming the greedy approximation for set
cover works as specified, When U = ∅, τ(α, Y) = t. We can add as many
members of C(t) to α as needed by proposition 2. Thus, the algorithm will
either terminate (because it is unable to find a member of C(t) such that
Uj ∈ τ(t, x ∈ C(t), y) for some j or because τ(t, α, y) = t, in which case β
determines {y} in t.

Note that this demonstrates that finding a smallest set of columns that
determines another column is NP-hard.

3 Markov chain

3.1 Construction

Since the set cover algorithm provided only finds one inclusion-minimal set of
attributes that determine a single attribute, finding more complex functional
dependencies requires additional computation. Additionally, since databases
generally contain very large amounts of data, being able to sample from the
database to perform faster calculations can be useful [6].

The following technique could utilize any function that discovers func-
tional dependencies within a table.

Let T be a (sparse) matrix in which T (A, b) with A ⊂ C(t) and b ∈ C(t)
is the number of samples in which the columnset A determined {b}. Let

7

S(t, n) be a sampling function that returns an indexed set of n random rows
of t.

To build the Markov chain, we take several samples of t and look for
multiple functional dependencies in each sample. We compile the results
into T , and then use Markov chain analysis to determine a large number of
functional dependencies. Given a sample size of n and a request to take N
samples, our algorithm is shown in algorithm 3.

Algorithm 3 Sampling algorithm

for i→ N do
s← S(t, n)
for c ∈ C(t) do

κ← C(t)− {c}
κ← κ ∪ {∅}
for d ∈ κ do

α← cover(s, κ− {d}, c)
T (α, c)← T (α, c) + 1

end for
end for

end for

The order and permutations of columns tested is arbitrary, and many
other possibilities likely exist. Good sampling functions ought capture a
sufficient amount of initial data and not be biased. However, we find that
this particular algorithm produces good results for our randomly generated
datasets and datasets from various applications.

We will generate an absorbing Markov chain from our table T . Every set
of columns will be a state (so there is one state for each member of P(C(t))),
and one absorbing state A will be created. We can define the transition
probability P between any two transient states x and y as:

P (x, y) =
T (x, y)

N
(7)

And define the transition probability between any transient state x to the
absorbing state A as:

P (x,A) =
[
∑
∀i(T (x, i))]−N

N
(8)

8

In order to show that P represents the transition probabilities of an ab-
sorbing Markov chain, we must show that P is normalized and that there is
a path from every transient state to the absorbing state [5].

To show that P is normalized, we must show that

Proposition 4. ∀i
∑
∀jP (i, j) = 1

Proof. For any transient state r, P (r, A) +
∑
∀jP (r, j) = 1 because 1 −∑

∀jP (r, j) = P (r, A). For A, P (A,A) = 1 by definition.

There is a path from every transient state to A as long as there was
at least one sample in which one columnset did not determine one column.
Otherwise, every sample taken had unique values in every column, indicating
that the sample size needs to be increased, or that the table contains all
unique values. Thus, P represents a proper absorbing Markov chain.

It is important here that cover returns minimal sets that determine
columns. It is easy to see that C(t) determines any member of C(t) (τ(t, C(t), y ∈
C(t)) = t). By returning minimal subsets, we build our Markov chain out of
more interesting data points, and thus the approximations produced will be
more interesting.

3.2 Calculations

Using P , we can calculate the fundamental matrix F of our Markov chain.
F = (I−Q)−1, where Q is a state transition matrix for the transient members
of P [5].

The fundamental matrix contains a probabilistic representation of the
functional dependencies within a table t. It is difficult to determine the
formula for the confidence of a given matrix, but given the nature of this
type of analysis, confidence should be proportional to n ∗N .

In addition to the obvious usefulness of F , there are several interesting
statistics that one can calculate. First, consider the normalized row sum of F .
The row with the highest normalized row sum corresponds to the columnset
that comes closest to determining all the other columns. This result can be
useful for determining primary keys and for query optimization [3]. In the
case where the set C(t) has the highest normalized row sum, there is likely
not enough sampling, or the data has no functional dependencies.

9

4 Conclusions

We have presented a fast algorithm for finding functional dependencies in
data as well as mechanisms to apply Markov chain analysis to both gener-
ate additional results and process data in more manageable subsets (which
can enable data mining under memory or time constraints). The set cover
algorithm and its Monte Carlo counterpart can make useful additions to any
data analysis toolbox.

10

References

[1] Tatsuya Akutsu, Satoru Miyano, and Satoru Kuhara. A simple greedy
algorithm for finding functional relations: efficient implementation and
average case analysis. Theoretical Computer Science, 292(2):481 – 495,
2003. Theoretical Aspects of Discovery Science.

[2] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education,
2nd edition, 2001.

[3] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database
Systems, Fourth Edition. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[4] Olivier Goldschmidt, Dorit S. Hochbaum, and Gang Yu. A modified
greedy heuristic for the set covering problem with improved worst case
bound. Inf. Process. Lett., 48(6):305–310, December 1993.

[5] C. M. Grinstead and J. L. Snell. Introduction to Probability. American
Mathematical Society, Providence, 1997.

[6] Heikki Mannila and Kari-Jouko Raiha. Algorithms for inferring functional
dependencies from relations. Data Knowl. Eng., 12(1):83–99, February
1994.

11

