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Most existing parametric query optimization (PQO) techniques rely on traditional query optimizer cost models,

which are often inaccurate and result in suboptimal query performance. We propose Kepler, an end-to-end

learning-based approach to PQO that demonstrates significant speedups in query latency over a traditional

query optimizer. Central to our method is Row Count Evolution (RCE), a novel plan generation algorithm

based on perturbations in the sub-plan cardinality space. While previous approaches require accurate cost

models, we bypass this requirement by evaluating candidate plans via actual execution data and training an

ML model to predict the fastest plan given parameter binding values. Our models leverage recent advances

in neural network uncertainty in order to robustly predict faster plans while avoiding regressions in query

performance. Experimentally, we show that Kepler achieves significant improvements in query runtime on

multiple datasets on PostgreSQL.
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1 INTRODUCTION
Parametric query optimization (PQO) aims to optimize parameterized queries, i.e. queries that have
identical SQL structure and only differ in the value of bound parameters. Such parameterized queries

are ubiquitous in modern database usage and present a significant opportunity for improving query

performance because they are executed repeatedly.
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Fig. 1. Kepler achieves an overall 2.41x speedup on Stack by 1. discovering better plans via RCE, 2. capturing
the majority of the speedup with SNGP models while minimizing regressions, and 3. having fast model
inference time.

However, PQO has primarily been studied from the perspective of reducing query planning time

by avoiding re-optimization when possible [7, 9, 13, 17, 18, 34]. Such approaches are implicitly

constrained by the performance of the system’s query optimizer, and therefore inherit all of

the well-studied sub-optimalities of traditional query optimizers [22]. Thus, an ideal system for

parameterized queries should not only seek to minimize planning time via PQO, but also optimize

query execution performance via query optimization (QO).

A variety of approaches have attempted to improve query optimization by applying machine

learning [20, 25, 29, 38, 39]. Unfortunately, most learned query optimization techniques suffer from

at least four drawbacks: (1) they require inference times higher than traditional methods [19, 24],

(2) they have inconsistent performance across dataset sizes and distributions [19, 26, 31], and (3)

they often have unclear query performance improvements [19]. Worse yet, many of these learned

systems lack (4) robustness: regressions in query performance are unacceptable in most production

scenarios [12]. This poses an especially large challenge for learning-based approaches, since they

typically cannot guarantee that all of their predictions result in improved execution time [35].

We propose that restricting the query optimization problem to the parameterized query setting

poses a more tractable learning problem and hence can be more robustly solved. To this end, we

present Kepler (K-plan Evolution for Parametric Query Optimization: Learned, Empirical, Robust),
an end-to-end learning-based approach for parameterized queries. Building on prior work in PQO

[34], Kepler leverages a novel plan generation strategy, a training query execution phase, and a

robust neural network model design. Combined, we show that these techniques provide significant

improvements in both planning time and query execution performance, satisfying both the PQO

and QO objectives. Best of all, Kepler’s use of robust neural network techniques drastically reduces

the frequency and magnitude of performance regressions. Figure 1 highlights how each of Kepler’s

components contribute to a 2.41x geometric mean speedup across the entire Stack benchmark [25].

Kepler follows a decoupled plan generation and learning-based plan prediction architecture

similar to the approach of [34] with three key differences. First, Kepler provides the key insight

that designing better candidate plan generation algorithms can lead to substantially faster plans

than the built-in optimizer’s. We propose Row Count Evolution (RCE), a method that efficiently

generates candidate plans by perturbing the optimizer’s cardinality estimates. RCE only requires a

simple interface to any standard cost-based optimizer, making it compatible with most database

systems.

Second, Kepler leverages actual query execution data to build a training dataset for best-plan

prediction, avoiding the well-studied mismatch between cost models and execution latency [22].

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.



Kepler: Robust Learning for Faster Parametric Query Optimization 109:3

While Kepler’s collection of execution data may be costly if the parameterized query is run infre-

quently, we argue that the additional execution data in our setting is justified by (1) the scale of

parameterized queries in production and (2) the query execution speedups afforded by RCE.

Third, Kepler uses robust neural network prediction techniques to decrease tail latency and

reduce query regressions (i.e. worse performance than the existing query optimizer). Specifically,

Kepler uses Spectral-normalized Neural Gaussian Processes (SNGPs) [23] to accurately quantify

how confident it is about a prediction, and falls back to the database’s query optimizer when it is

uncertain.

Our contributions.

• We identify a novel and practical formulation of query optimization for parameterized query

templates in which speedups against a classical query optimizer can be robustly achieved.

• We propose a novel candidate plan generation algorithm, Row Count Evolution (RCE), that

produces significant speedup compared to classical query optimizers on real-world and

synthetic datasets.

• We demonstrate that incorporating robust ML techniques allows models to capture large

portions of the speedups while greatly reducing the risk of regressions.

• We demonstrate that our model inference costs are negligible via an end-to-end PostgreSQL

integration for the query path.

• We open-source both our system implementation for PostgreSQL
1
as well as our query

execution datasets, which we believe is the first dataset tailored towards parameterized query

optimization. The datasets collectively represent ∼14.2 CPU years of query execution time.

They serve as a benchmark for further work on best-plan prediction as well as simulating

more efficient techniques for training data collection.

2 RELATEDWORK
Parametric query optimization. PQO has been extensively studied in a variety of works [7, 9,

13, 17, 18, 34]. The goal of the standard PQO formulation is to reduce the amount of times the query

optimizer is invoked while minimizing the corresponding regression in query latency [7, 13, 34].

Although Kepler also focuses on parametric queries, its primary objective is closer to that of

standard query optimization, which seeks to improve query latencies. Kepler also simultaneously

improves on the PQO objective by leveraging fast-inference ML models.

Prior PQO approaches typically make simplifying assumptions such as heavily relying on the

optimizer cost model or using base table selectivities as input features [13, 34]. This may be feasible

for some advanced commercial systems; however, this over-reliance on the existing optimizer is

particularly dangerous given the well-studied deficiencies of optimizers such as PostgreSQL [22].

Our approach follows a similar structure as [34], which also decouples the populateCache

(candidate generation) and getPlan stages (ML-based prediction). However, since they focus on

the standard PQO objective of attempting to match the existing optimizer, they require using a

bandit algorithm to reduce their training data cost. By contrast, the primary objectives of Kepler

are query performance and robustness, leading to a lower emphasis on training query efficiency.

Several popular database systems have implemented PQO features, including Oracle Adaptive

Cursor Sharing, Aurora Managed Plans, and SQL Server Parameter Sensitivity Plan optimization [1–

3]. These features all heavily rely on their cost models (based on traditional statistics and heuristics),

and do not utilize machine learning models.

1
https://github.com/google/kepler
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Query plan generation. Several prior works suggest methods for candidate generation, which we

divide into four main categories.

(1) Default optimizer plans. The simplest method combines the optimizer’s selected plan for

each query instance. This approach is frequently found in PQO algorithms since they seek

to cache the optimizer’s plans [34]. This strategy is also employed in [30] to estimate the

empirical suboptimality of existing query optimizers. The quality of the resulting candidate

plan set is predicated upon the optimizer’s ability to either generate optimal plans for each

query instance or a sufficient variety of good plans across the workload to benefit from plan

sharing. However, we empirically observed that the optimizer fails to do so on real-world

datasets. (Table 10b).

(2) Cost-based plan pruning. populateCache algorithm [34] extends the default optimizer

candidate generation method with cost-based 𝐾-set identification to prune the candidate set

to size 𝐾 . However, this pruning method may mistakenly prune good plans if the correlation

between the cost estimates and actual execution times are poor.

(3) Optimizer configuration parameters. Query optimizers typically expose a variety of

configuration parameters that can be used to alter their query planning behavior. In particular,

PostgreSQL has configuration parameters that allow one to disable entire classes of join

and scan operators from being used in query plans. Bao selectively applies subsets of these

parameters in order to generate new query plans [25]. Although simple, disabling operator

types is a heavy-handed and indirect approach to generating new plans.

(4) Exact cardinalities. Exact cardinality query optimization (ECQO) attempts to construct the

optimal plan by computing the plan induced by the exact cardinality values of all possible

sub-plans [10]. However, for sufficiently complex queries, evaluating these exponentially-

many sub-plans is prohibitively slow even with optimizations [32]. The selected plans are

also not always the fastest, as observed by [30].

In summary, these methods are all unsatisfactory for a variety of reasons: failure to generate

faster plans (1, 2, 4), ineffectively exploring the plan space (3), or are computationally intractable

(4).

Machine learning for query optimization. A wide range of techniques apply ML on QO, most no-

tably for predicting cardinality estimates (CE) [20, 38, 39]. Recent work show cardinality estimation

may be brittle in practice, and that even small Q-errors can lead to noticeably worse plans [22, 35].

In general, these work do not measure the actual end-to-end execution latency of selected plans

after integrating their models into an optimizer [24].

Several approaches have demonstrated improved query performance, but typically do not consider

the issue of robustness. Neo [26] and Bao [25] leverage tree convolutional neural networks to

adaptively optimize plans using reinforcement learning and contextual bandits respectively. These

online algorithms offer no guarantees on stability or regression avoidance, and hence cannot reliably

be deployed in production. Similarly, techniques applying deep reinforcement learning to QO have

not demonstrated consistently better performance and suffer from robustness issues [21, 28, 37].

For example, Figure 9 in [37] indicates a significant amount of regressions both at train and test

time.

3 OVERVIEW
In this section, we describe our problem setting (Section 3.1), give an overview of our approach

(Section 3.2), and further discuss specific design choices that are made in Kepler (Section 3.3).
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3.1 Problem Setting
As in prior work [34], we consider parameterized queries that are repeatedly invoked with different

parameter bindings. Such queries are specified by a template 𝑄 with𝑚 parameterized predicates
2

𝑥0, . . . , 𝑥𝑚−1 of varying data types. We let 𝑞 denote a specific query instance, i.e. 𝑄 with a fixed

set of parameter binding values. A query plan 𝑝 associated with a template 𝑄 specifies how to

execute any query instance 𝑞 ∼ 𝑄 . A sub-plan query of 𝑄 is 𝑄 restricted to only a subset of its

tables [14], and its output cardinality is referred to as its sub-plan cardinality. We assume a fixed

database system with a built-in query optimizer, and denote the default plan 𝑝default (𝑞) to be the

plan selected by the query optimizer for 𝑞. Finally, a workload𝑊 ⊂ W consists of a set of query

instances {𝑞0, . . . , 𝑞𝑛−1} for a single template 𝑄 , whereW denotes the space of all possible query

instances.

3.2 Kepler Overview
Our approach at a high level follows that of [34]: we consider a single, isolated query template 𝑄 ,

and decouple the problems of generating a set of possible plans and deciding which plan to use for

each query instance. More formally, these problems can be described as:

(1) Candidate generation. Generate a candidate set of 𝑘 plans {𝑝0, . . . , 𝑝𝑘−1} for 𝑄 , out of the
exponentially-large set of all possible plans P (corresponding to populateCache in [34]).

(2) Best-plan prediction. Learn a mapping 𝑀 :W → 𝑃 that minimizes some objective, e.g.

some measure of execution latency over the workload (corresponding to getPlan in [34]).

Unlike [34], who attempt tomatch the performance of the built-in optimizer, our goal is to improve

upon the built-in optimizer as much as possible. To achieve this, Kepler includes a sophisticated

candidate generation algorithm, described in Section 4, that empirically generates better plans than

the built-in optimizer. The afforded speedups allow Kepler to avoid relying on potentially-brittle

online learning approaches (e.g. contextual bandits) during the training data collection phase.

Objective. We first define several key metrics and terms in our problem setting. For a given

query instance, we denote the optimal plan over some plan set 𝑃 as 𝑝𝑃opt = min𝑝∈𝑃 𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑝, 𝑞),
where 𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 refers to the actual execution time. We define 𝑝∗opt (𝑞) as the optimal plan over all

possible plans, i.e. when 𝑃 = P. Typically, the optimal plan refers to 𝑝∗opt for candidate generation

and 𝑝𝑃opt for modeling. We also refer to near-optimal plans as plans that have similar execution

time to 𝑝𝑃opt or 𝑝
∗
opt.

For some fixed candidate set 𝑃 , we define the (oracle) speedup ratio relative to the default plan

as:

𝑆opt (𝑃,𝑊 ) =
∑

𝑞∈𝑊 𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑝default, 𝑞)∑
𝑞∈𝑊 𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑝𝑃opt, 𝑞)

(1)

This quantity is the factor by which we can improve the total execution time of the workload

if we had oracle access to the optimal plan in 𝑃 for each query instance. We note that this ratio

corresponds exactly with the definition of execution cost sub-optimality in [34]; the re-naming to

speedup emphasizes the differences in our system objectives. Since we can union 𝑃 with the set of

all default plans over𝑊 , this speedup ratio is always lower bounded by 1.

Similarly, for some model𝑀 :W → 𝑃 , we define its model speedup as:

𝑆model (𝑊 ) =
∑

𝑞∈𝑊 𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑝default, 𝑞)∑
𝑞∈𝑊 𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑝model, 𝑞)

(2)

2
The parameters do not necessarily have to be in predicates, e.g. they may appear in a LIMIT clause. However, our

experiments only include the parameterized predicate case.
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Fig. 2. Kepler architecture.

This quantity corresponds to how much faster the model is at executing a workload than the

default optimizer. Although 𝑆model is by definition upper bounded by 𝑆opt, it is not necessarily

lower bounded by 1, i.e. if the model selects plans worse than the default plan.

An auxiliary objective of Kepler is reducing workload tail latency. Several work have identified

that database optimizers may perform significantly worse in the tail of the query latency distribution,

which poses a significant obstacle for use cases that require a more uniform runtime [25].

Kepler architecture. Figure 2 shows the architecture of Kepler, consisting of a Kepler trainer and

Kepler client. The trainer ingests query instances from the query logs produced by production

DBMSs and aggregates them into query templates. For each query template 𝑄𝑖 , the Kepler trainer

aims to find the near-optimal plans for all its query instances 𝑞 𝑗 . It uses Row Count Evolution

(RCE) to generate candidate plans 𝑝𝑘 and executes the queries with these plans to collect execution

statistics. Tominimize impact on productionDBMSs, the trainermay optionally request a production

DBMS to spawn ephemeral instances to execute these queries. The Kepler trainer trains an ML

model to predict the best plan for 𝑞 𝑗 based on these execution statistics and deploys the trained

models into the production DBMSs.

A Kepler client maintains a mapping from a query template to an ML model. When a production

DBMS receives a query instance 𝑞, the client first checks if an ML model is available for 𝑞. If

available, it performs model inference to predict the best plan hints and provides the hints to the

optimizer only if the associated confidence score is higher than a threshold. Otherwise, it falls back

to the built-in optimizer to produce a plan.

Changing environments and workloads. In our current implementation, Kepler assumes a fixed

system state, including database configuration, optimizer implementation, and data distribution.

If any of these aspects changes relatively slowly or infrequently, Kepler can periodically collect

new execution data and retrain purely on data from the new system state. We posit that in the

majority of production parameterized query use cases, (1) the database is reconfigured infrequently,

and (2) the data distribution drifts slowly, e.g. in scenarios in which a relatively small amount

of similarly-distributed data is added each day. Additionally, Kepler is designed to be robust to

dynamic workloads in which query parameter binding values change by detecting when inputs are

out of its training distribution (see Section 7.4).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.
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Fig. 3. Predicted vs. exact cardinalities on instances of Stack q12_2. Dashed y=x line is ideal (i.e. actual =
estimated).

Limitations. The target usage of Kepler is for parameterized queries that are executed frequently

enough to justify the training data collection cost. As discussed in Section 8, the exact training

data collection regime in this paper serves the dual purposes of definitively demonstrating the

speedups available and enabling further research in efficiency. We anticipate a final production

system will use an iteration of this research with leaner training data collection. The cost-benefit

analysis of using Kepler is situation-dependent; ultimately the user must weigh the potential query

performance gains against the cost. If ephemeral instances are used for training data collection,

Kepler assumes they are representative of production query performance.

3.3 Kepler Design Choices
In this section, we further discuss the specific design choices made to ensure that Kepler can be

reliably deployed with minimal production overhead.

Using actual execution latencies. Since the objective of Kepler is to reduce actual end-to-end query
latencies, it necessitates executing queries on a real database to provide ground-truth signal. To

minimize the training collection time and avoid load on the production system, the DBMS may

spawn ephemeral instances to speed up and isolate the training execution process.

Limiting reliance on cost models. By collecting actual execution latencies, Kepler eschews explicitly
relying on optimizer cost estimates for determining the quality of a plan. Figure 3 shows the

estimated vs. exact cardinalities of all joins on a sample of query instances from Stack [25]. In

particular, 64% of points have estimated cardinality = 1, likely due to the independence assumption

of the PostgreSQL optimizer.

Falling back to the built-in optimizer. Kepler avoids regressions by falling back to the existing

query optimizer when it is not confident in identifying the optimal plan. Given the low overhead of

model inference, the overall Kepler inference cost is nearly always lower than that of Opt-Always.

For cases where planning time is a concern due to high fallback frequency, one can incorporate an

additional model designed to predict a safe plan without re-invoking the optimizer.

Independence of query templates. Kepler handles query templates independently, i.e. each query

template will generate its own candidate plans, collect its own training data, and train a model

specific to that template. Though potentially more expensive than a procedure that generalizes

over multiple query templates, this design has the advantages of 1) providing a more tractable

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.
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Table 1. RCE hyperparameters.

Notation Definition

𝐺 Number of generations.

𝑏 Exponent base for row count perturbation.

𝑚 Exponent range for row count perturbation.

𝑆 Number of plans sampled from the previous generation.

𝑁 Number of perturbation for each candidate plan.

ML problem, and 2) isolating each query from regressions caused by changes pertaining to other

queries as models iterate over time and new query templates are on-boarded. Leveraging shared

information between query templates while not increasing the risk of regressions is an interesting

direction for future work.

4 ROW COUNT EVOLUTION
The goal of the candidate generation stage is to construct a set of plans 𝑃 such that it contains a

near-optimal plan for every query instance 𝑞 in the workload distributionW. Additionally, 𝑃 should

be sufficiently small such that it is feasible to execute each plan for training dataset collection.

Balancing these two competing objectives is the main challenge for any candidate generation

algorithm.

In this work, we only consider generating fully-specified plans, i.e. the join order and every

join/scan method are defined. Alternatively, a candidate generation algorithm could specify a subset

of the plan decisions and allow the query optimizer to determine the remainder.

Workload candidate generation. Given an algorithm 𝐴 for generating a candidate plan set over a

single query instance 𝑞, we define the corresponding plan set over a workload𝑊 as the union of

the per-instance plan sets 𝐴(𝑊 ) := ⋃
𝑞∈𝑊 𝐴(𝑞) (see lines 1-7, Algorithm 1). We also define plan

sharing to describe the case where 𝑝𝑃opt (𝑞) is generated from some other query instance 𝑞′ (i.e.

𝑝𝑃opt (𝑞) ∉ 𝐴(𝑞), 𝑝𝑃opt (𝑞) ∈ 𝐴(𝑞′)).

Our approach. We propose Row Count Evolution (RCE)
3
, a computationally-efficient algorithm

that generates new plans by randomly perturbing the optimizer’s cardinality estimates. RCE is

predicated on the idea that cardinality misestimates are the primary underlying reason for optimizer

suboptimality. RCE exploits the fact that our candidate generation stage only needs to generate a

set of plans that contains a (near-)optimal plan instead of directly identifying a single performant

plan. Like Bao [25], RCE leverages the built-in query optimizer to generate candidate plans, but

does so in a more fine-grained and efficient way.

We instantiate the idea of applying random perturbations as an evolutionary-style algorithm,

described in Algorithm 1. RCE maintains a sequence of generations of plans, with the initial

generation consisting solely of the query optimizer’s plan. To construct subsequent generations,

RCE first uniformly samples parent plans from the previous generation. For each of these base

plans, RCE perturbs the join cardinalities of only the sub-plans that appear in the parent plan by

multiplicative factors sampled from an exponentially-spaced range (lines 27-39). By repeating this

process multiple times and feeding in the resulting perturbations into the query optimizer, RCE

generates a set of children plans (lines 15-21). Out of these, only unseen plans (i.e. those that did

not appear in any prior generation) are kept for the next generation (lines 18-19).

3
The name "Row Count" is inspired by the PostgreSQL extension pg_hint_plan’s row count hints, which we use to modify

the PostgreSQL optimizer’s cardinality estimates.
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Algorithm 1 Row Count Evolution.

1: functionWorkloadCandidateGeneration(workload𝑊 )

2: 𝑃 ← {}
3: for query instance 𝑞 ∈𝑊 do
4: 𝑃 ← 𝑃 ∪ RowCountEvolution(𝑞)
5: return 𝑃
6:

7: function RowCountEvolution(query instance 𝑞)

8: 𝑝0 = the base plan for 𝑞

9: 𝐶0 = {(𝑝0, {}, {𝑠 → 0∀ sub-plans 𝑠})}
10: for generations 𝑔 = 1, 2, . . . 𝐺 do
11: Sample up to 𝑆 base plans 𝐵𝑔 uniformly from 𝐶𝑔−1
12: 𝐶𝑔 ← {}
13: for (base plan 𝑝 , row count map 𝑟 ) ∈ 𝐵𝑔 do
14: for 𝑖 = 1, 2, . . . , 𝑁 do
15: 𝑟 ′← SamplePerturbations(𝑝 , 𝑟 )

16: 𝑝 ′← GetOptimizerPlan(𝑟 ′)
17: if 𝑝 ′! = 𝑝 then
18: 𝐶𝑔 .add((𝑝

′
, 𝑟 ′))

19: return 𝐶0 ∪𝐶1 ∪ . . . ∪𝐶𝐺
20:

21: function SamplePerturbations(plan 𝑝 , row count map 𝑟 )

22: for sub-plan 𝑠 ∈ 𝑝 do
23: 𝑤 ← 𝑝 .getEstimatedCardinality(𝑠)

24: 𝑒𝑙 ← −min(log𝑏 (𝑤),𝑚)
25: 𝑒𝑢 ← 𝑒𝑙 + 2𝑚
26: Sample 𝑓 uniformly from [𝑏𝑒𝑙 , . . . , 𝑏𝑒𝑢 ]
27: 𝑟 [𝑠] ← 𝑤 · 𝑓
28: return 𝑟

② 
Sample 
S plans

① 
Perturb 
|⋈|

B⋈C

Plan 1

  ⋈
…

…

Plan C1

  ⋈
…

…

…
…

Plan 1

  ⋈
…

…

…

Plan C2

  ⋈
…

…

…A⋈D
Plan 1

Plan S
…

③ 
Perturb 
|⋈|

Generation 1, C1<=N Generation 2, C2<=S*N

A⋈B

|A⋈B|=[4,40,400]
|C⋈D|=[1,17,170]

Base plan

Perturbed row count map
…

  ⋈
C⋈D

…

…

Fig. 4. An example RCE process.
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Example. Figure 4 shows an example of RCE generating candidate plans for a query instance with

two generations. The base plan joins the result of 𝐴 Z 𝐵 and 𝐶 Z 𝐷 with estimated |𝐴 Z 𝐵 | = 40,

|𝐶 Z 𝐷 | = 17. RCE first constructs a set of candidate row counts for each sub-plan by perturbing

their cardinalities by multiplicative factors. These candidate row counts for 𝐴 Z 𝐵 and 𝐶 Z 𝐷 are

[4, 40, 400] and [1, 17, 170], respectively, using a base of 10 and a range of 1. RCE then uniformly

samples new join cardinalities from these sets; one sample of 400 and 17 influences the optimizer

to produce a new plan Plan-1 in generation 1 1 . It repeats the same process N times to produce

𝐶1 plans in generation 1. Next, RCE samples 𝑆 from a deduplicated set of plans from generation

1 2 and randomly perturbs the row counts on each sampled plan 𝑁 times to generate 𝐶2 plans in

generation 2 3 .

RCE as exact cardinality matching. One interpretation of RCE is that it efficiently builds a covering

set of exact-cardinality plans. The RCE-generated candidate set contains plans generated from a

diverse range of perturbed sub-plan cardinalities. If there are sufficiently many perturbations, likely

at least one will be reasonably close to the exact cardinalities for any particular query instance and

their respective induced plans will also likely be similar.

Multiplicative perturbations. Applying multiplicative perturbations is well-motivated by the

standard metric of Q-error in cardinality estimation. RCE further uses an exponentially-spaced

perturbation set in order to have a similar support as the optimizer’s Q-error distribution.

Perturbing only relevant sub-plans. Instead of perturbing all 2
𝑛 − 1 sub-plans (for a query joining

𝑛 tables), RCE only perturbs the cardinalities of the 𝑛 − 1 sub-plans that actually appear in the

sampled query plans. This significantly increases the efficiency of RCE with only a small loss of

generality: since the set of perturbations is inherited between generations, a misestimated sub-plan

cardinality will only never be perturbed if its cardinality is significantly overestimated by the query

optimizer. However, this is an unlikely scenario since query optimizers tend to underestimate

sub-plan cardinalities due to the independence assumption.

This re-optimization of only the sub-plan cardinalities that appear in the optimizer plan bears a

strong resemblance to the re-optimization procedure in [36], which iteratively re-optimizes using

sampling-based cardinality estimates. The key differences in our setting are (1) we do not have to

return a single plan, and (2) we require a fast procedure since we repeat it for each query instance,

motivating the use of perturbations over sampling.

RCE as local search. RCE effectively explores the plan space via a random walk in the low-

dimensional subspace of sub-plan cardinalities, initialized at the optimizer’s cardinality estimates.

This formulation implicitly leverages the fact that while these initial estimates are typically incorrect,

they are still more informative than random estimates.

RCE hyperparameters. Our implementation of RCE includes a variety of hyperparameters that

allow one to flexibly trade off the number of generated plans against the potential total speedup

(Table 1).

• Width and depth of the perturbation tree. Increasing the number of generations 𝐺

increases the number of plans, making it more likely a good plan is found. However, plans

in later generations are perturbed further from the original plan, and may have a lower

likelihood of being relevant. To ensure constant-time processing for each generation, we

sample (up to) a fixed number 𝑆 of base plans in each generation, and perturb each one 𝑁

times.

• Perturbation values. The exponent base 𝑏 and range𝑚 limits the magnitude of a single

perturbation. We also introduce a sub-plan perturbation limit that controls the number of
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times a specific sub-plan can be perturbed, effectively controlling the total perturbation range

of any given sub-plan.

• Direct limits on number of plans. We implement limits on the number of plans that can

be generated from a single parameter and in total. Once the limit is reached, the evolutionary

candidate generation process is terminated and only default plans are kept for remaining

parameters. The total plans limit is a soft limit since the final evolutionary iteration may

produce up to the single-parameter limit and the remaining parameters may contribute new

default plans.

5 TRAINING DATA COLLECTION
After generating candidate plan set 𝑃 , we execute each plan over a training workload to generate a

dataset of execution latencies for supervised best-plan prediction. The training workload may be

provided by the user or captured in a DBMS query log [34]. Rather than executing all candidate

plans for each query instance, we use adaptive timeouts and construct near-optimal plan covers to

prune suboptimal plans.

Executionmechanics. We force the optimizer to produce a candidate plan by providing all join/scan

methods and the join order via hints. We parallelize the execution of query instances and their

candidate plans in multiple databases. We simulate a warm buffer cache scenario by executing each

plan multiple times and taking the minimum as the estimated latency [22]. This repeated execution

strategy also reduces the potential noise in our execution time measurements; though we observed

the amount of noise to be inconsequential in our experimental setup. We leave a full analysis of

query execution time under different caching, concurrency, and resource availability settings to

future work.

Adaptive timeouts and plan execution reordering. We use a timeout policy to minimize wasted

resources on executing sub-optimal candidate plans. The timeout policy adapts from [37] with

two main modifications. First, we always execute the default plan first and adaptively reorder the

remaining plans to maximize the impact of the timeout’s progressive tightening on a per query-

instance basis. We execute plans in ascending order of their historical execution latencies across

query instances as a simple heuristic for tightening the timeout as quickly as possible. Second, we

do not apply the tightened timeout for the first iteration of each plan in order to ensure that each

plan simulates a warm-cache scenario.

Online plan cover pruning. We also use an online plan pruning technique to eliminate plans based

on actual execution time. Specifically, we initially execute all plans for the first 𝑁 query instances

of a query template, then use a Set Cover formulation to prune down to a minimal plan cover set
for the remaining query instances. The pruned set becomes our 𝑘 candidate plans for the query

template, i.e. our models only attempt to predict from those plans.

We consider a plan to be near-optimal for a query instance 𝑞 if its execution time is within a

1 + 𝜖 factor of the fastest time for 𝑞 we have seen so far. Each plan has an associated set of query

instances for which it is near-optimal. The plan cover is the smallest set of plans such that each

query instance has a near-optimal plan in the set. We construct the plan cover using the standard

greedy approximation for Set Cover, which iteratively picks the plan that is near-optimal for the

most remaining query instances. We additionally relax the problem to require that only 1 − 𝛿 of all

query instances be covered, allowing us to trade off the plan cover size and the achievable speedup.

Tail latency reordering. For many query templates, the distribution of default execution latencies

is heavy-tailed. Parameters in the tail tend to be more sub-optimal, and therefore have an outsized

impact on the total speedup. To ensure the plan cover computation includes these parameters, we
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evaluate these query instances first. This reordering produces a 7-8x reduction in total execution

time and number of plans over the entire Stack dataset.

6 ROBUST BEST-PLAN PREDICTION
After collecting a full training dataset of actual execution latencies over our candidate plan set, we

use supervised ML to predict the best plan for any query instance. Kepler trains one model for each

query template with the objective to maximize workload speedup while minimizing regressions.

Kepler also falls back to the optimizer’s plan when its predicted confidence is low. Section 7 shows

that the inference time of our model is negligible compared to the typical query planning time of a

classical optimizer.

6.1 Features
Given a template𝑄 with𝑚 parameters, Kepler uses solely the𝑚 parameter values as input features.

The supported types include numerics (float/int), strings, and dates/timestamps. We apply standard

preprocessing techniques to each type: embeddings for strings/low-dimensional integer features,

normalization to 𝑁 (0, 1) for numerics, and numeric conversion for date/time features.

We do not convert the parameter values to their respective base table selectivities as in [34]

for the following reasons. First, selectivity is inherently a lossy representation and may obscure

information when two distinct values have the same selectivity. Second, selectivity is inferior when

the optimizer’s cardinality estimation is sub-optimal, see Figure 3.

String columns and vocabulary selection. For each string-valued column, we construct a fixed-size

vocabulary in order to limit model size. String features are one-hot encoded via a lookup table,

with buckets for out-of-vocabulary values. An embedding layer is then applied on this one-hot

encoding, creating a learnable embedding for each value in the vocabulary.

We choose the vocabulary as the top-𝑘 values ordered by the total possible improvement of all

query instances with that value. We define the max marginal improvement strategy as selecting the

top-𝑘 column values 𝑣 in column 𝑖 under the following objective:

𝑚(𝑣, 𝑖) =
∑

𝑞∈𝑊,𝑥𝑖=𝑣

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑝default, 𝑞) − 𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑝𝑃opt, 𝑞) (3)

Our evaluation shows that this strategy is effective. For columns with significantly more distinct

values, one may factorize embeddings over subcolumns [38].

6.2 Training Objectives
Kepler models maximize the model speedup defined in Equation 2 while minimizing the number of

regressions. This objective is not directly differentiable, so we discuss various surrogate learning

objectives.

Multi-label classification. We model best-plan prediction as a multi-label classification problem

in which each near-optimal plan has a positive label (as opposed to just the optimal plan) [33]. The

multi-label objective also provides a richer supervised signal, improving the quality of the learned

intermediate representations. We use the single-label transformation of multi-label classification

loss by training the near-optimal probability of each candidate plan with binary cross-entropy loss.

Although our models only predict plans in the plan cover, which may not necessarily contain

every query instances’ default plan, our definition of near-optimality does exploit the availability

of default plan execution data during training. We define a plan to be near-optimal if its estimated

latency improvement is within a 1 + 𝜏 factor of the optimal improvement latency. Namely, we say a

plan 𝑝 is near-optimal if (ℓ𝑑 − ℓ𝑝 ) (1 + 𝜏) ≥ (ℓ𝑑 − ℓ𝑜 ), where 𝜏 > 0, ℓ𝑑 = 𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑝default, 𝑞), ℓ𝑝 =
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𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑝, 𝑞), and ℓ𝑜 = min𝑝∈𝑃 𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑝, 𝑞). Computing near-optimality requires execution

times for all query instances for all plans.

Prior work formulate best-plan prediction as a regression [6, 27, 34] and multi-class classification

problem [34]. Both formulations are unsatisfactory for a variety of reasons. Regression across a

significant range can be unstable, a problem that is exacerbated by our timeout procedure, which

obscures the true latency of suboptimal plans. Regression attempts a more challenging problem

with finer granularity than required, imposing unnecessary constraints and objectives on the

training. We only need to predict the identity of the optimal plan rather than its execution time.

Inversions and gross over-estimates of non-optimal plans are acceptable to us but will weigh heavily

in regression loss. Meanwhile, classification objectives that predict a single optimal plan perform

poorly in scenarios when multiple plans can be near-optimal and empirical execution latencies

can be subject to noise. For example, consider a problem where plans 𝑝1, 𝑝2 execution latencies’

are both drawn from 𝐶 + 𝑁 (0, 1) for some large 𝐶 . Then a multi-class classifier will have equal

predicted likelihood for 𝑝1 and 𝑝2 and thus have low confidence, when in actuality being confident

in 𝑝1 and/or 𝑝2 is desirable.

Example-dependent loss. Different query instances may have disproportionate impact on the over-

all objective Equation 2. We leverage the standard sample-weighting approach example-dependent

cross entropy [8, 16] to prioritize those with the largest improvement delta. For plans worse than

the default plan, we upweight them by a factor 𝐶 . For all near-optimal plans, we apply a soft

weighting based on their empirical execution improvement, i.e. 1 + 𝐷 log(ℓ𝑑 − ℓ𝑝 ), where 𝐶 and 𝐷

are both tunable hyperparameters.

6.3 Models
We use simple feedforward neural networks as our base models. For inference efficiency, we consider

a neural network with one output head per plan on top of a shared representation, which improves

inference speed and model size over approaches that have separate models for each plan [34].

We train our neural network models with standard minibatch SGD. In a real-world setting,

the model’s hyperparameters can be tuned via simple search techniques or more sophisticated

algorithms by partitioning the training data into a train and validation set.

Uncertainty. Kepler models incorporate calibrated predictions and uncertainty estimates to avoid

predicting significantly suboptimal plans. Two state-of-the-art approaches for incorporating uncer-

tainty into neural networks are ensembling and Spectral-normalized Neural Gaussian Processes

(SNGPs) [23]. The former trains𝑀 distinct models simultaneously and estimates the uncertainty

from their joint outputs. The latter applies spectral normalization to all layers, providing a bi-

Lipschitz guarantee on all intermediate representations, and uses a Gaussian process output layer

to efficiently estimate the uncertainty. Since ensembling increases the training and inference cost

by a linear factor𝑀 , Kepler uses the SNGP approach due to its lower overhead.

7 EXPERIMENTS
Our evaluation of Kepler seeks to demonstrate that it robustly achieves state-of-the-art execution

latency speedups on parameterized query workloads. We summarize our main results as follows:

• An end-to-end implementation of Kepler on PostgreSQL substantially outperforms the built-

in optimizer and Bao. Both RCE and ML models play large roles in achieving this speedup.

(Section 7.2)

• RCE discovers significantly better plans than existing candidate generation baselines. We

also observe that RCE plans are frequently superior to exact-cardinality plans. (Section 7.3)
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• Using SNGP models is crucial to capturing speedups generated by RCE while minimizing

query regressions. (Section 7.4).

• We release a dataset consisting of ∼14.2 years of query executions as a benchmark for future

research in modeling approaches (Section 7.5).

Objectives. To evaluate our methods, we use both RCE speedup 𝑆opt (𝑅𝐶𝐸) (shortened as 𝑆𝑅𝐶𝐸 )

and model speedup 𝑆model, defined in Equations 1 and 2 respectively. We note that 𝑆model = 𝑝 · 𝑆𝑅𝐶𝐸 ,
where 0 ≤ 𝑝 ≤ 1 corresponds to the proportion of the speedup the model captures. Since the

model may predict worse plans than the built-in optimizer, we also measure the query regression

frequency 𝑃reg, defined as the proportion of test query instances the model does at least 10% worse

than the default optimizer on. The primary metrics for each of our components are:

(1) End-to-end performance: 𝑆model
(2) Candidate generation performance: 𝑆𝑅𝐶𝐸
(3) Model performance: 𝑝 , 𝑃reg

Kepler aims to maximize 𝑆model by maximizing 𝑝 and 𝑆𝑅𝐶𝐸 , while minimizng 𝑃reg. We also report

the 99th-percentile tail latency speedup, which may be relevant in applied scenarios. We define this

as 𝑃method
99

(𝑊 ) = 𝑝99 ( {𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑝default,𝑞)∀𝑞∈𝑊 })
𝑝99 ( {𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 (𝑝method,𝑞)∀𝑞∈𝑊 }) , where 𝑝99 (𝐶) denotes the 99th percentile highest

value in a collection 𝐶 .

7.1 Setup
Datasets and query extraction. We use two synthetic benchmarks: TPC-H (uniform and skewed

with Zipf factor = 1, 10 GB [4]), and Stack, a database consisting of real-world StackExchange

data [25]. TPC-H consists of 22 parameterized queries. We use an augmented version of Stack with

87 parameterized queries: 42 from the original benchmark and 45 additional manually-written

query templates.

All experiments were run using PostgreSQL 13.5 on Google Cloud Platform (GCP) n1-highmem-16

instances with 16 CPU cores, 108 GB of RAM, and 2 TB of SSD. Following [22], we set shared_buffers

to 75 GB, effective_cache_size to 80 GB, and work_mem to 4 GB to ensure that the entire dataset fits

in memory. For TPC-H, we use the indexes defined in BenchBase [11]. For Stack, we add indexes

on all primary keys, foreign keys, and columns that appear in a predicate of any query.

Query instance generation. We follow the official TPC-H specification [5] to generate parameter

values of each query template. For Stack, we synthetically generate parameter values so that every

query instance returns nonempty results. This is accomplished by uniformly sampling rows from

the result set of a derived query that selects column values for which parameterized predicates

would produce at least one value. Range predicates are constructed by first sampling a single value

in the manner, then sampling lower/upper bounds around this value.

Training query execution. For each query instance and plan hints, we execute the resulting plan

three times to simulate a warm-cache scenario, and take the minimum latency as the ground truth.

For slow queries, we executed each up to 8 times in parallel on the same machine, and observed

negligible differences with the serial execution setting. We leave a full analysis of different execution

scenarios to future work.

RCE hyperparameters. Unless stated otherwise, we use the same values for all RCE hyperpa-

rameters in all of our experiments, demonstrating its efficacy even when untuned for specific

benchmarks. We set the number of generations 𝐺 to 3, the exponent base 𝑏 to 10, the exponent

range𝑚 to 2, the number of perturbations per plan 𝑁 to 20, and the number of samples extracted
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Fig. 5. PostgreSQL integration evaluation.

from each generation 𝑆 to 20. For each query template, we run RCE on the first 50000 query

instances for Stack, and all query instances for TPC-H.

Model details. All of our experiments use a fixed base neural network with three layers of

64 hidden units each. We use Adam with learning rate 3e-4, ReLU activation functions, and 10-

dimensional string embeddings. For SNGP models, we additionally apply spectral normalization

to all dense layers, and replace the output dense layer with a random Fourier feature Gaussian

Process with 128 random features. For all models, we fall back to the default plan if the predicted

confidence is less than 0.9. For all queries, we use a 80/20 train/test split, and report results (speedups,

regressions) on the test workload.We did not attempt to tune our models or performmodel selection,

although it is straightforward to do so by reserving a validation set from the training dataset.

7.2 Kepler ImprovesQuery Execution Latency
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Fig. 6. 𝑆𝑅𝐶𝐸 and 𝑃𝑅𝐶𝐸
99

on Stack by query, sorted by 𝑆𝑅𝐶𝐸

End-to-end performance. We integrate Kepler into the PostgreSQL query optimizer to demonstrate

that it delivers large speedups in a real deployment. Our implementation loads Tensorflow Lite

models on the database server for fast CPU model inference and uses the pg_hint_plan extension

to force specific plans via hints. Providing the query id as a comment with the SQL query text from

any PostgresSQL client connection triggers Kepler query plan prediction.

We executed a sample of 1000 evaluation set query instances per query on the integrated Kepler

PostgresSQL system. Table 5a summarizes the speedups of Kepler over Stack, demonstrating that

our PostgreSQL implementation achieves nontrivial speedups on the majority of queries, with over

2x speedup over the entire workload for 32.2% of queries. These speedups indicate that Kepler is

able to bypass inaccuracies PostgreSQL’s cardinality estimation and cost model via RCE.
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Fig. 8. Model results on Stack.

Figure 5b confirms that the Kepler deployment achieves near-identical speedups to those expected

based on the pre-collected execution dataset. This is because the use of lightweight ML models and

planning hints incur low planning-time overhead. Figure 5c shows the distribution of the ratio of

model inference times to PostgreSQL planning time for all queries in Stack. The model inference

time is mostly under 5% of PostgreSQL planning time and at most 30%.

Our total speedup results over entire workloads are quite significant since our workloads – query

instances sampled uniformly from the space of non-empty query instances – are not designed to

adversarially challenge the optimizer. Next, we summarize the contributions from the two key

components: (1) RCE to uncover the potential speedups and (2) the ML models to capture speedups.

Finally, we compare the results to Bao as a baseline.

RCE speedups. We illustrate the efficacy of RCE by showing that it achieves large speedups on

both Stack and TPC-H. Figure 6 shows the per-template 𝑆𝑅𝐶𝐸 and 𝑃𝑅𝐶𝐸
99

, with RCE achieving over

2x speedup on 31/87 queries and over 1.2x speedup on 78/87 queries.

Similarly, RCE improves 6/22 queries on TPC-H uniform (Figure 7a) and 9/22 queries on TPC-

H skewed (Figure 7b). In particular, RCE finds larger speedups on TPC-H skewed due to the

non-uniformity in its data distribution.

ML models predict fastest plans and avoid regressions. Next, we show that our ML models are able

to robustly capture the speedup produced by RCE, i.e. they maximize 𝑝 while minimizing 𝑃reg. In

Figures 8a and 8b, we plot what proportion of 𝑆𝑅𝐶𝐸 and 𝑃𝑅𝐶𝐸
99

on Stack we respectively capture

per query. These distributions show that our models can reliably predict near-optimal plans: our

models capture over 80% of 𝑆𝑅𝐶𝐸 on over 80% of Stack queries. In Figure 9, we plot the distribution
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Fig. 9. Query improvements and regressions on all query instances in Stack.

Table 2. Comparison of Bao and Kepler performance.

Query Bao speedup Kepler speedup

q11_0 1.201 1.651
q12_0 1.238 1.271
q13_0 1.408 1.566
q14_0 1.848 1.619

q15_0 1.157 7.727
q16_0 1.168 9.250

of the absolute magnitude of model improvements and regressions compared to the default plan,

illustrating that the frequency and magnitude of the regressions are minimal compared to those of

the improvements.

Bao on parameterized queries. We evaluate Bao, one of the few prior approaches that demonstrates

actual improvement in execution latency, on our parameterized version of Stack [25]. For illustrative

purposes, we run Bao for 2000 query instances on six representative templates from the original

Stack dataset [25]. As shown in Table 2, we observed that Kepler outperforms Bao on 5 out of 6

templates, and in particular is able to find far greater speedups on q15_0 and q16_0. As we later

show in Figure 10a, this is because the candidate generation algorithm in Bao is severely suboptimal.

Training data collection cost. The speedups achieved by Kepler come at a nontrivial training

query execution cost - on average, we used 39 CPU days worth of query execution time per query

template. Hence, Kepler is most applicable to workloads where query templates are executed at

high frequency. We discuss directions to significantly reduce this training data collection cost at

the end of Section 7.4 as well as Sections 7.5 and 8.

7.3 Analyzing RCE
Having observed the behavior of the overall system, we now discuss characteristics of the first

major component of Kepler: RCE. We evaluate RCE’s performance against candidate generation and

plan pruning baselines before exploring the effects of index configuration and key hyperparameter

choices. After discussing RCE’s empirical performance against those of exact cardinality (EC) plans,

we close the section by offering perspectives and empirical justifications for why RCE works well.

Comparison against baselines. We compare against two main candidate generation baselines:

• PG: the default candidate generation method (Section 2) using the PostgreSQL optimizer.
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(a) Comparison between RCE and Bao candidate generation (dis-
abling scan/join methods).

Algorithm Speedup 𝑆 Tail speedup 𝑃99 % improved

RCE 3.14 3.65 89.0%

RCE + PCP (ours) 3.11 3.63 87.9%
RCE + CBP 1.37 1.77 50.5%

PG 2.0 2.07 49.4%

PG + CBP [34] 1.96 2.02 49.4%

(b) Comparison between PG and RCE with alternative pruning algorithms. We report average and
99th-percentile speedup aggregated using geometric mean, as well as the percentage of queries
having total speedup greater than 20%. PG + CBP corresponds to the method in [34].

Fig. 10. Candidate generation baseline comparisons on Stack.

Table 3. Effect of number of generations in RCE in Stack query q11_0.

𝐺 Total num plans Plan cover size 𝑆𝑅𝐶𝐸

1 9 6 1.369

2 29 7 2.185

3 62 9 2.235

4 99 8 2.166

• Bao: for each query instance, we try every Bao arm, i.e. all 48 valid combinations on disabling

various join/scan methods in PostgreSQL [27].

Since [34] consider PG + cost-based pruning (CBP) as their candidate generation method, we

simultaneously compare RCE against PG and our plan-cover pruning (PCP) algorithm against CBP

in Table 10b. RCE finds significantly more speedups than PG: 𝑆𝑅𝐶𝐸 is over 1.2 on 89% of Stack

queries, as opposed to 49.4% for PG. Although CBP achieves little speedup loss when applied to

PG, it incurs far greater loss when applied to RCE, indicating that optimizer cost estimates cannot

reliably predict the quality of RCE plans. By contrast, PCP achieves almost no degradation in

speedup since it uses actual execution data to evaluate plans.

The Bao candidate generation method produces far more plans than RCE, so for computational

reasons we evaluated it on a diverse subset of queries designed to be representative of the entire

Stack dataset. Figure 10a shows that RCE achieves similar or better speedup on all queries, and is

notably able to find non-trivial speedup on each query.
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Table 4. Geometric means of per-query 𝑆𝑅𝐶𝐸 for various index configurations.

PK +FK +Predicates +DBA

1.888 2.41 5.286 5.284

Table 5. Comparison of average query latencies (in seconds) for RCE best plan, exact cardinality plan, and
PostgreSQL selected plan.

Query RCE Exact Cardinality Query optimizer

q11_0 0.045 0.167 0.180

q12_2 0.350 0.768 0.954

q14_10 2.503 2.107 5.732

q16_1 1.136 2.174 8.575

q20_0 0.012 0.046 0.232

q33_0 0.519 2.920 3.377

Number of generations 𝐺 . The hyperparameter 𝐺 has a significant impact on the number and

quality of RCE-generated plans, which we illustrate by varying 𝐺 for q11_0 in Stack, with results

shown in Table 3. The number of plans and plan cover size steadily grows up to three generations,

although most of the speedup is captured in plans found using two generations. Increasing 𝐺 to

four generations does not produce any marginal benefit.

Exponential row count perturbation range: 𝑏 and𝑚. To justify our choice of perturbation range

hyperparameters 𝑏 = 10 and𝑚 = 2, we analyzed the perturbation factor necessary to induce a

change at a single level in the plan. For each of 𝑛 − 1 sub-plans in a query tree (for a query 𝑄

with 𝑛 tables), we use binary search to identify the factor by which the cardinality estimate for

that sub-plan must be perturbed in order to induce a change in the optimizer’s plan. On Stack, we

observed that although some plans needed a 10
6
perturbation factor to induce a plan change, the

vast majority of factors were less than 10
2
.

Robustness to index configuration. RCE finds better plans on databases with different index

configurations. We ran RCE over the following index configurations for Stack: primary keys

only (PK), foreign keys (FK), predicate columns, and database administrator defined additional

indexes [25]. Table 4 shows RCE finds faster plans in all configurations. Similar to [22], we find

that more indexes leads to a larger speedup.

Can RCE discover optimal plans? Although RCE demonstrably generates faster plans than a

variety of baselines, we would also like to know how close are RCE-generated plans to the true

optimal plans 𝑝∗opt (𝑞). Since it is infeasible to determine 𝑝∗opt (𝑞) in practice, we instead compare

against the standard benchmark of exact cardinality plans [22, 29].

We executed exact cardinality plans for a subset of the training workload and compared them

against their respective best RCE plans in Table 5. We again used a subset of queries from the Stack

dataset for computational reasons. Due to the large number of joins in some query templates, we

additionally set the exact cardinality for a subset of tables to be a high constant if its corresponding

query did not finish within 15 minutes. Notably, RCE plans are substantially faster than exact

cardinality plans on 5 out of 6 queries. This illustrates that even accurate cardinality estimation

methods can lead to suboptimal plans due to incorrect assumptions and other deficiencies in the

cost model.
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Table 6. Comparison of average query latencies (in seconds) for RCE-all, RCE-cluster, and RCE-instance.

Query RCE-all RCE-cluster RCE-instance

q11_1 0.024 0.027 0.051

q12_6 0.307 0.307 0.316

q20_0 0.006 0.006 0.010

q21_1 0.129 0.129 0.153

q25_3 2.212 2.212 2.212

q33_0 0.593 0.670 0.810

q34_1 2.482 2.663 2.914
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(a) Histogram of plan cover sizes in Stack.
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(b) Histogram of single-best plan to all-plan 𝑆𝑅𝐶𝐸 ratio.

Fig. 11. Parameter sensitivity on all Stack queries.

Query clusters facilitate RCE.. Query instances with similar parameter binding values often have

similar query plan behavior, e.g. as visualized by plan diagrams [15]. We hypothesize that these

groups of similar instances, or clusters, can dramatically increase the efficacy of RCE via plan

sharing. Recall that in our candidate generation procedure, we execute RCE for each query instance

and take the union over all resulting plan sets. Hence, each cluster only requires a single query

instance’s RCE process to reach the cluster-wide optimal plan. For a cluster of size 𝑁 and probability

P(𝑞𝑖 ) of query instance 𝑞𝑖 discovering the optimal plan, the overall probability of discovering the

plan over the cluster is 1 −∏𝑁
𝑖=1 (1 − P(𝑞𝑖 )), which rapidly approaches 1 for sufficiently large 𝑁

and a reasonable distribution of P(𝑞𝑖 ).
To demonstrate the existence and impact of clusters, we define a cluster for each plan 𝑝 as all

query instances for which 𝑝 is the fastest plan. Then, for each query instance 𝑞, we compare the

execution latencies of the fastest plan from three plan sets: (1) RCE-all, containing all plans from

all query instances, (2) RCE-cluster, containing all plans from query instances in the same cluster

as 𝑞, and (3) RCE-instance, containing only the plans generated from the RCE process for 𝑞. As

shown in Table 6, RCE-all and RCE-cluster have very similar execution times, while RCE-instance

is often slower, indicating that intra-cluster plan sharing plays a large role in the efficacy of RCE.

7.4 ML Models
We first motivate the use of ML models by demonstrating that Stack is highly parameter sensitive –
i.e. different query instances have different optimal plans. We then justify modeling design choices

with an ablation of using SNGP in our models and evaluation of varying confidence thresholds

highlight the importance of incorporating robustness as a primary design component in Kepler.

We conclude with extensive analyses around feature space selection, embedding vocabularies, and

training data size.
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Fig. 12. Comparison of uncertainty approaches.
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Fig. 13. Tradeoff between 𝑆model and 𝑃reg (aggregated respectively using geo-mean and mean over all Stack
queries.

Parameter sensitivity. We investigate the parameter sensitivity of Stack and TPC-H queries based

on our execution data. On Stack, all but four query templates had plan cover size greater than one

(Figure 11a). In Figure 11b, we show the distribution of single-best plan suboptimality ratios, defined
as the ratio of total latency of the oracle best plan against the total latency of the single best plan

(i.e., the fixed plan with minimum total execution time). Ratios less than 1 indicate that using only

a single plan incurs a loss in speedup, with lower values being more severely suboptimal. Thus,

Figure 11b implies that multiple plans are necessary to capture the full speedup.

On the other hand, TPC-H is designed to not be parameter sensitive, which we confirmed by

observing a plan cover of size 1 for all queries. Hence, our modelling results focus solely on Stack.

Loss functions/training objectives. Figure 12 compares various loss functions and models: SNGP

with multilabel loss, SNGP with multiclass loss, and a vanilla NN with multilabel loss. Multilabel

loss + SNGP achieves similar or better speedup to other methods, while having a lower regression

frequency for all queries.

Model calibration and uncertainty. We further investigate the ability of our SNGP models in

producing calibrated output probabilities. In Figure 13, we plot the test workload model speedup

and regression frequency as a function of confidence threshold varying from 0 (no falling back)

to 1 (always falling back). The captured speedup and regression frequency both decay smoothly

as a function of confidence, which allows the user to specify their tolerance for regressions. This
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𝑆𝑅𝐶𝐸 𝑆model 𝑃reg

No fallback 1.044 0.781 23.8%

Fallback 1.044 0.997 0.2%

(a) Site name.

𝑆𝑅𝐶𝐸 𝑆model 𝑃reg

No fallback 2.027 1.866 3.3%

Fallback 2.027 1.822 0.1%

(b) Question last activity date.

Fig. 14. Out-of-distribution experiments.
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Fig. 15. Speedup ablations on features and vocabulary.

figure also demonstrates the importance of the fallback mechanism: one can dramatically reduce

the regression frequency while only sacrificing a small portion of the speedup.

SNGP out-of-distribution detection. Although Kepler is designed for relatively static workloads, it

is robust to dynamic workloads by falling back to the default plan for out-of-distribution (OOD)

inputs. We evaluate SNGP’s OOD detection ability by holding out specific slices of the training

distribution for an example query, q21_2 on Stack. We consider two variants: (1) holding out sites

totaling up to 20% of the workload, and (2) holding out the last 20% of last_activity_date values on

the question table. Figure 14 shows that in both scenarios, Kepler’s fallback mechanism allows it

accurately detect OOD inputs and drastically reduce 𝑃reg while still preserving some speedup.

Raw parameter values vs selectivity features. In Figure 15a, we ablate our feature choice using raw

features and selectivity features. We compare their model speedups to 𝑆𝑅𝐶𝐸 on a subset of Stack

queries. Selectivity features perform far worse due to the poor cardinality estimates in PostgreSQL.

Vocabulary. In Figure 15b, we ablate how we select the embedding vocabulary for string features.

In particular, we evaluate our max marginal improvement method (described in Section 6) against

choosing the most frequent values based on the PostgreSQL histogram. Our results confirm that

the best strategy is choosing the vocabulary to the be the values with the most potential impact on

the speedup.

How much training data is required? We evaluate the performance of our models when using

less data by subsampling the training data size, as shown in Figure 16. As expected, model speedup

improves with more training data while maintaining a regression frequency below 0.2%. The

leftmost point uses only 5% of the data, or 200 training query instances, demonstrating that a large

amount of speedup can be robustly captured with small amounts of training data.
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Fig. 16. Model speedup and regression frequency as a function of fraction of training data used.

7.5 Dataset Contribution
To train models and evaluate Kepler, we generated a query execution dataset that comprises

∼14.2 years of CPU time across 200 million query executions of 131 query templates. By releasing

this dataset online
4
, we envision that it can be used to facilitate future research in modeling and

efficiency without having to execute any queries. For example, possible use cases include simulating

active learning approaches that only selectively execute a subset of queries, or developing better

models or loss functions. We believe that the techniques developed using this dataset – and not the

specifically trained models – will be directly transferable to other parameterized query settings.

8 CONCLUSION AND FUTUREWORK
We introduced Kepler, a system that can robustly speed up parameterized queries using a learning-

based approach.We extensively evaluated Kepler on PostgreSQL and demonstrated that (1) our novel

candidate generation algorithm RCE can provide significant speedups in query execution latency,

and (2) robust ML models can reliably predict faster plans while avoiding regressions. Interestingly,

we observed that RCE-generated plans were often far better than exact cardinality plans, indicating

that even a widely-used system as PostgreSQL has significant room for improvement. Evaluating

Kepler on database platforms other than PostgreSQL is a natural next step; we believe that the

empirical nature of Kepler allows it to discover performance gains regardless of the DBMS.

There are a myriad of future directions for improving the efficiency and performance of Kepler.

For example, prior work in cardinality estimation can benefit Kepler in several ways. Instead

of perturbing uniformly, RCE can leverage generative cardinality distributions to sample higher

likelihood perturbations, e.g. from NeuroCard [38]. Another possibility is to augment the model

features with the query plan tree and selectivity estimates, allowing the model to determine when

cardinality estimates are accurate, as well as leveraging shared structure between similar query

templates. Our models are the first demonstration that speedups can be robustly captured; they can

likely be substantially improved via additional modeling techniques and tuning. Similarly, while

our end-to-end PostgreSQL integration is sufficient to demonstrate Kepler’s performance gains on

a real system, every aspect of this implementation can be further tuned.

We utilized an expensive training data collection procedure in order to make more robust claims

about our results and produce a complete dataset for further modeling and efficiency research. For

practical purposes, our training procedure can likely be made much more efficient, e.g. via active

4
https://github.com/google/kepler
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learning. In conjunction with Figure 16, this implies that similar performance can be achieved with

significantly less training cost.
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