
Institute of Cognitive Science

Master’s Thesis

Hybrid Sweeping: Streamlined Perceptual
Structured-Text Refinement

Egon W. Stemle
egon.stemle@uos.de

March 20, 2009

Supervisors:

Stefan Evert
Computational Linguistics Group

Peter König
Neurobiopsychology Group

Institute of Cognitive Science
University of Osnabrück

Germany

mailto:egon.stemle@uos.de




Abstract

This thesis discusses the KrdWrd Project.
The Project goals are to provide tools and infrastructure for acquisition, visual annotation,

merging and storage of Web pages as parts of bigger corpora, and to develop a classification
engine that learns to automatically annotate pages, operate on the visual rendering of pages,
and provide visual tools for inspection of results.





Attributions

The KrdWrd Project is a joint development with Johannes Steger.
I am the single author of chapters 1, 3, and 5.
Johannes Steger is the main author of a joint paper we will submit to the 5th Web as Corpus

workshop hosted by the Association for Computational Linguistics Special Interest Group in
San Sebastian, Spain, on 7 September, 2009; chapter 2 (fully) and 4 (mostly) are included from
this paper.

I designed, implemented, and carried out the data analyses on the gathered user data. I set-
up and maintained the general infrastructure of the project. I wrote the homework assignment
and presented it in class. I co-authored the manual for the KrdWrd Add-on (the main authors
are Maria Cieschinger and Kilian Klimek). I also co-authored the refinement of the annotation
guidelines (the main authors are Maria Cieschinger and Kilian Klimek).





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Relation to Recent Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The KrdWrd Architecture 5

2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Core Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 DOM Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1.1 Firefox Add-on . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1.2 XUL Application . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Storage and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2.1 Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2.3 Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Feature Extractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3.1 Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3.2 Structural . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3.3 Visual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The KrdWrd Annotation Framework 13

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.1 Functional Walk-Through . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Implementation Survey . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Pre-Processing: Harvesting Web Pages . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 URL List Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 The KrdWrd App: Harvesting Mode . . . . . . . . . . . . . . . . . . . 15
3.2.3 The KrdWrd Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Manual Annotation: Classification of Web-Page Content by Human Annotators 17
3.3.1 The KrdWrd Add-on: An Annotation Platform . . . . . . . . . . . . . 17
3.3.2 The KrdWrd Annotation Guidelines . . . . . . . . . . . . . . . . . . . 19
3.3.3 The KrdWrd Tutorial: Training for the Annotators . . . . . . . . . . . 20
3.3.4 The KrdWrd Assignment: A Competitive Shared Annotation Task . . . 20

vii



3.4 The Gold Standard: Compilation and Analysis of manually annotated Data . . 21
3.4.1 Initial Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 The KrdWrd App: Annotations Merging Mode . . . . . . . . . . . . . 21
3.4.3 Merge Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 The KrdWrd Machine Learning Framework – Perceptually Driven Sweeping

of Web Pages 27

4.1 Extraction Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Inspecting Classifier Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Summary and Outlook 29

A Appendix 31

A.1 Projekt Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.2 Enclosed Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

The KrdWrd Homework Assignment . . . . . . . . . . . . . . . . . . . . . . . 31
The KrdWrd Add-on Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.3 Trivia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



1 Introduction

This thesis presents the KrdWrd Project [@KRDW].
The KrdWrd Project deals with the design of an abstract architecture for A) the unified treat-

ment of Web data for automatic processing, without neglecting visual information, on annota-
tion and processing side and B) the appropriate annotation tool to gather data for supervised
processing of such data.

The Project comprises an implementation appropriate for pre-processing and cleaning of
Web pages, where users are provided with accurate Web page presentations and annotation
utilities in a typical browsing environment, while machine learning algorithms also operate
on representations of the visual rendering of Web pages. The system also preserves the orig-
inal Web documents and all the additional information contained therein to make different
approaches comparable on identical data.

1.1 Motivation

The Field of Statistical Natural Language Processing (NLP) has developed an amazing set of
utilities, tools, and applications – but they all depend on and benefit from substantial amounts
of electronically readable, pre-processed text, referred to as corpora, for their statistical lan-
guage models. These corpora should be representative of the type of text they cover, that is
domain, genre, and style of the language should be controllable, they should be easily accessi-
ble and freely available, only little work should suffice to obtain the desired and needed quan-
tities of running text, and for the purpose of monitoring language development the collection
process should be synchronous or dynamic. [KG03, KB06, FNKdS07]

Unfortunately, it has proven very difficult to obtain large quantities of ‘traditional’ text that
is not overly restricted by authorship or publishing companies and their terms of use, or other
forms of intellectual property rights1, is versatile – and controllable – enough in type, and
hence, suitable for various scientific use-cases. [Kil07, @SZAG, BNC]

The growth of the World Wide Web as an information resource has been providing an alter-
native to large corpora of news feeds, newspaper texts, books, and other electronic versions of
classic printed matters: The idea arose to gather data from the Web for it is an unprecedented
and virtually inexhaustible source of authentic natural language data and offers the NLP com-
munity an opportunity to train statistical models on much larger amounts of data than was
previously possible.[GN00, DW05, Eve08]

However, we observe that after crawling content from the Web the subsequent steps, namely,
language identification, tokenising, lemmatising, part-of-speech tagging, indexing, etc. suffer
from ’large and messy’ training corpora [. . . ] and interesting [. . . ] regularities may easily be
lost among the countless duplicates, index and directory pages, Web spam, open or disguised
advertising, and boilerplate [BDD+07].

1For Web corpora it is believed that they are a special case of the caches and indexes used by search engines,
that is to say that copyright infringement complaints can always be relayed to Google and others.

1



1 Introduction

The consequence is that thorough pre-processing and cleaning of Web corpora is crucial in
order to obtain reliable frequency data. The dimension of this task calls for an automated
solution, the broadness of the problem for supervised machine learning approaches.

1.2 Relation to Recent Work

CleanEval is a shared task and competitive evaluation on the topic of cleaning arbitrary Web
pages. In 2007 the first exercise took place and brought together language technology research
and development in the field: even though the organisers had not imagined that Machine
Learning (ML) methods were suitable for this task, at the event several systems did use them.
The Participants also used heuristic rules – but many different ML methods were seen. The
language models were mainly language independent, e.g. average length of a sentence or num-
ber or characters in a sentence, ratio of punctuation marks and other character classes, etc.

The methods may be equally well suited for the cleaning task – and another CleanEval com-
petition will be held where the enhanced successors of these systems will compete – but the
context of the task needs modifications. We will formulate the prevailing criticism here but
note that the organisers have already acknowledged much of the criticism [BCKS08]:

The Annotation Guidelines arguably left some space for cases in which annotators felt the
guidelines to be insufficient.

The Annotation Set-up consisted of two windows open, one showing the page as rendered
by a browser, and the other showing a pre-cleaned version of the page, in a plain-text editor;
however, at least two participating systems found that using e.g. a Web browser for annotation
significantly improves the annotation speed compared to this method. [BDD+07, SMP08]

The Output Document Format consisted of one plain-text document per cleaned Web
page, had all boilerplate removed, and simple mark-up added; however, this simple format
implied that the link between the original Web page and the retained material was lost and
that no structural information was available, that no explicit statement about what was con-
sidered boilerplate was left in the data, and it turned out that inserting the mark-up was more
problematic than removing boilerplate. [BCKS08]

The Size of the Development Set was set small – for the mentioned reasons; too small
for ML methods to be applied. Furthermore, having the same page only annotated by two
people is certainly good for ‘the quantity of data’ but not for the quality.

The Scoring Metrics was the Levenshtein edit distance applied to words instead of tokens
and without the substitution operator, i.e. the distance between two strings was given by the
minimum number of insertions and deletions of single words needed to transform one into
the other. This was problematic for two reasons: firstly, the algorithm was slow to run and
secondly, the measure does not compensate for the fact that a single wrong choice may lead to
many – in consequence – misaligned words.

2



1.3 Structure of the Work

Remark: we are well aware of page segmentation algorithms that carry the term visual in
their name, most noticeably [RHJRWY04] but consider them to be visual in the sense of our
structural DOM pipeline, i.e. they do not treat visual appearance in our sense where visual
feature maps can be computed and thus, successful attention models.

1.3 Structure of the Work

This thesis follows the KrdWrd Project throughout its development: We start in 2 by describ-
ing the design goals and principles underlying the abstract KrdWrd architecture and its imple-
mentation. We continue in 3 and 4 where we present a specific instantiation of the architecture,
which comprises an extensive system for automated Web cleaning tasks, and show how it was
put into use. We conclude in 5 with a summary and an outlook on further development.

The appendix contains additional material that was authored or co-authored by me, and
links to other relevant resources available online.

3



1 Introduction

4



2 The KrdWrd Architecture – A DOM-Tree
Based, Modular Content-Extraction
Framework for Web Pages

Working with algorithms that rely on user-annotated web content suffers from two major
deficits:

1. For annotators, the presentation of Web sites in the context of annotation tools usually
does not match their everyday Web experience. The lack or degeneration of non-textual
context may negatively affect the annotators’ performance, and the learning require-
ments of special annotation tools may make it harder to find and motivate annotators in
the first place.

2. Feature extraction performed on annotated Web pages on the other hand leaves much
of the information encoded in the page unused, mainly those concerned with rendering.

We will now present the design (2.1) and implementation (2.2) of the KrdWrd Architecture
that addresses these two issues.

2.1 Design

2.1.1 Design Goals

We want to provide an architecture for Web data processing that is based on the unified treat-
ment of data representation and access on annotation and processing side. This includes an
application for users to annotate a corpus of Web pages by classifying single text elements and
a back-end application that processes those user annotations and extracts features from Web
pages for further automatic processing.

2.1.2 Requirements

Flexibility The system should be open enough to allow customization of every part, but also
specifically provide stable interfaces for more common tasks to allow for modulariza-
tion.

Stability We need a stable HTTP data source that is independent of the original Website, in-
cluding any dependencies such as images, style-sheets or scripts.

Automaticity Back-end processing should run without requiring any kind of human interac-
tion.

Replicability Computations carried out on Web pages’ representation must be replicable across
systems, including any user-side processing.

5



2 The KrdWrd Architecture

Quantity Corpus size should not influence the performance of the system and total process-
ing time should grow linearly with the corpus.

Usability Acquisition of manually classified corpora requires a fair amount of contributions
by users annotating the pages. Achieving a high level of usability for the end-user there-
fore is of paramount importance. As a guideline we should stay as close as possible to
the everyday Web experience. We also need to provide tools for learning how to use the
annotation tool and how to annotate Web pages.

2.1.3 Core Architecture

To address these requirements, we developed an abstract architecture, a simplified version of
which is depicted in figure 2.1. We will outline the rationale for the basic design decisions
below.

For rendering a Web page, an object tree is constructed from its HyperText Markup Lan-
guage (HTML) source code. This tree can be traversed and its nodes inspected, modified,
deleted and created through an API specified by the World Wide Web Consortium’s (W3C)
Document Object Model (DOM) Standard [HHW+04]. It’s most popular use case is client-
side dynamic manipulation of Web pages, for visual effects and interactivity. This is most
commonly done by accessing the DOM through a JavaScript interpreter. Essentially, a page’s
DOM tree allows access to all the information we set out to work on: structure, textual content
and visual rendering data. We therefore make it the sole interface between application and
data.

While all browsers try to implement some part of the DOM standard (currently, Version
3 is only partially implemented in most popular browsers), they vary greatly in their level of
compliance as well as their ability to cope with non-standard compliant content. This leads to
structural and visual differences between different browsers rendering the same Web page.

Therefore, to guarantee replicability, we require the same DOM engine to be used through
the system.

To reach a maximal level of automaticity and not to limit the quantity of the data, it is
important that data analysis takes place in a parallel fashion and does not require any kind of
graphical interface, so it can e.g. be executed on server farms. On the other hand we also need
to be able to present pages within a browser to allow for user annotation. Consequently, the
same DOM engine needs to power a browser as well as a headless back-end application, with
usability being an important factor in the choice of a particular browser.

The annotation process, especially the order of presentation of pages, is controlled by a cen-
tral Web server - users cannot influence the pages they are served for annotation. Thereby any
number of concurrently active users can be coordinated in their efforts and submissions dis-
tributed equally across corpus pages. All data, pristine and annotated, is stored in a database
attached to the Web server. This setup allows the architecture to scale automatically with user
numbers under any usage pattern and with reasonable submission quantities.

Stability of data sources is a major problem when dealing with Web data. As we work on
Web pages and the elements contained in them, simple HTML dumping is not an option - all
applications claiming to offer full rewriting of in-line elements fail in one way ore another,
especially on more dynamic Web sites. Instead, we use a HTTP proxy to cache Web data used
in our own storage. By setting the server to grab content only upon first request and providing
a option to turn off download of new data, we can create a closed system that does not change
anymore once populated.

6



2.2 Implementation

Webserver, Database, Proxy

DOM Engine

Annotation Data Analysis

Browser Headless

Figure 2.1: Basic KrdWrd Architecture: both users annotating corpus pages through their Web
browser and back-end applications working on the data run the same DOM engine.
The central server delivers and stores annotation data and coordinates user submis-
sions.

2.2 Implementation

2.2.1 DOM Engine

The choice of DOM engine is central to the implementation. We reviewed all major engines
available today with respect to the requirements listed in 2.1:

The KDE Project’s KHTML drives the Konquerer browser and some more exotic ones, but
lacks a generic multi-platform build process.

This practical limitation is lifted by Apple’s fork of KHTML, called WebKit. It is the under-
lying engine of Safari browsers on Mac OS X and Windows. There also exists a Qt and a GTK
based open source implementation. Whereas they are quite immature at the moment and not
very widely used, this will change in the future and WepKit will certainly become a valuable
option at some point.

Whereas the open source variant of Google’s browser, Chromium, promises superior execu-
tion speed by coupling WebKit with it’s own V8 JavaScript engine, it suffers from the same
problem as WebKit itself of not being stable enough yet to serve as reliable platform - The
Linux client for example is barely usable, a Mac client does not exist yet.

We also briefly checked on Presto (Opera) and Trident (Microsoft), but discarded them due
to their proprietary nature and lack of suitable APIs.

The Gecko engine (Mozilla Corporation) in conjunction with its JavaScript implementation
Spidermonkey marks a special case: It implements XUL [GHHW01], the XML User Interface
Language, as a way to create feature rich cross-platform applications. The most prominent of
those is the Firefox browser, but also e.g. Thunderbird, Sunbird and Flock are built with XUL.
An add-on system is provided that allows extending the functionality of XUL applications to

7



2 The KrdWrd Architecture

Figure 2.2: Web pages can be annotated with the KrdWrd Add-on by hovering over the text by
mouse and setting class labels by keyboard short-cut or pop-up menu

third-party code that gains full access to the DOM representation, including the XUL part itself.
The proposed KrdWrd back-end can be implemented in the same manner as Firefox: provide
custom JavaScript and XUL code on top of Mozilla’s core XUL Runner. Code can easily be
shared between a browser add-on and XUL applications and unsupervised operation is trivial
to implement in a XUL program.

Given the synergy attainable in the XUL approach and Firefox’ popularity amongst users, it
was a simple decision to go with Mozilla Gecko for the core DOM implementation. We note
that WebKit’s rise and fast pace of development might change that picture in the future.

2.2.1.1 Firefox Add-on

Interactive visual annotation of corpus pages via Web browser is realized by the KrdWrd Add-
on. To facilitate adoption, it comes with a comprehensive user manual and an interactive
tutorial (see below in 2.2.2.1). For easy setup, Firefox’ proxy configuration is automatically
pointed to a preconfigured host, respective credentials are auto-added to the password man-
ager and the user is directed to a special landing page upon successful installation. The proxy
feature also serves as a nice example of code shared between add-on and application. Fur-
thermore, the installation binary is digitally signed, so the user does not have to go through
various exception dialogs.

Once installed, the functionality of the Add-on is available via a broom icon in the status bar.
Whereas it offers lots of functions centered around annotation and corpus selection, its core
feature is simple: In highlight mode (the broom turns fuchsia) the mouse hovering over the
page will highlight the text blocks below the cursor. The block can then be annotated using the
context-menu or a keyboard short-cut, which will change its color to the one corresponding
to the annotation class. Figure 2.2 shows a fully annotated page and the context-menu.

8



2.2 Implementation

2.2.1.2 XUL Application

The XUL application consists of a thin JavaScript layer on top of Mozilla’s XUL Runner. It
mainly uses the XUL browser control to load and render Web pages and hooks into its event
handlers to catch completed page load events and the-like. Without greater C level patching,
XUL still needs to create a window for all of its features to work. In server applications, we
suggest using a virtual display such as Xvfb to fulfil this requirement.

In operation the application parses the command-line given, which triggers the loading of
supplied URLs (local or remote) in dedicated browser widgets. When the “load complete”
event fires, one of several extraction routines is run and results written back to disk. Imple-
mented extraction routines are

grab for simple HTML dumps and screen-shots,

diff for computing a visual difference rendering of two annotation vectors for the same page,

merge for merging different annotations on the same Web page into one in a simple voting
scheme,

pipe for textual, structural and visual data for the feature pipelines.

2.2.2 Storage and Control

Central storage of Web pages and annotation data is provided by a database. Clients access it
via CGI scripts executed by a Web server while the back-end uses python wrapper scripts for
data exchange.

2.2.2.1 Web Server

Server-side logic is implemented by Python CGI scripts, so any Web server capable of serv-
ing static files and executing CGI scripts is supported. Users can access the server directly by
URL or via the Firefox Add-on menu. An overview page rendered by the server provides a
submission overview as well as a detailed per-corpus submission list. In conjunction with the
Add-on, server side scripts control serving of corpus pages by summing over submissions in
the database and randomly selecting a page from those with the least total submission num-
ber. The Web server also delivers the actual HTML data to the client, whereas any embedded
objects are served by the separate proxy server. Furthermore, it controls the tutorial: Users
are presented with sample pages and asked to annotate them. Upon submission, a server side
script compares the user’s annotation with a reference annotation stored in the database and
generates a page that highlights differences. The result is delivered back to the user’s browser
as seen in figure 2.3.

2.2.2.2 Database

The database mainly stores the raw HTML code of the corpus pages. User submissions are vec-
tors of annotation classes, the same length as the number of text nodes in a page. In addition
there is a user mapping table that links internal user ids to external authentication. Thereby
user submissions are anonymized, yet trackable by id.

Given the simple structure of the database model, we choose to use zero-conf database back-
end sqlite. This should scale up to some thousand corpus pages and users.

9



2 The KrdWrd Architecture

Figure 2.3: During the tutorial, a Visual Diff between the user’s submission and the sample
data is presented right after submission. Here, the annotation from 2.2 was wrong
in tagging the sub-heading “ITSS Helpdesk”: the correct annotation (yellow) is
highlighted in the feedback.

It is important to note that any database content must be pre-processed to be encoded in
UTF-8 only. Unifying this bit of data representation at the very start is essential to avoid en-
coding hell later in the process.

2.2.2.3 Proxy

Any object contained in the corpus pages needs to be stored and made available to viewers of
the page without relying on the original Internet source.

Given an URL list, initial population of the proxy data can easily be achieved by running the
XUL application in grabbing mode while letting the proxy fetch external data. Afterwards, it
can be switched to block that access, essentially creating a closed system. We found WWWOf-
fle to be a suitable proxy with support for those features while still being easy to setup and
maintain.

2.2.3 Feature Extractors

The XUL Application extracts information from corpus pages and dumps it into the file-system,
to serve as input to specialized feature extractors. This implementation focuses on feature ex-
traction on those nodes carrying textual content, providing one feature vector per such node.
We therefore generate one feature vector per such node through a linguistic, visual and DOM-
tree focused pipeline.

2.2.3.1 Text

For linguistic processing, the Application dumps raw text from the individual nodes, with lead-
ing and trailing whitespace removed, converted to UTF-8 where applicable. External applica-

10



2.2 Implementation

Figure 2.4: Coordinates of a node’s bounding box (straight) and text constituents (dotted) as
provided to the visual processing pipeline.

tions can read these data and write back the feature vector resulting from their computation
in the same format.

2.2.3.2 Structural

During the Application run, a set of “DOM-Features” is directly generated and dumped as
feature vector.

Choosing the right DOM properties and apply the right scaling is a non-trivial per-application
decision. Our reference implementation includes features such as depth in the DOM-tree,
number of neighboring nodes, ratio text characters to HTML code characters, and some generic
document properties as number of links, images, embedded objects and anchors. We also pro-
vide a list of the types of node preceding the current node in the DOM-tree.

2.2.3.3 Visual

For visual analysis, the Application provides full-document screen-shots and coordinates of
the bounding rectangles of all text nodes.1 When text is not rendered in one straight line,
multiple bounding boxes are provided as seen in figure 2.4. This input can be processed by
any application suitable for visual feature extraction.

For simple statistics dealing with the coordinates of the bounding boxes, we use a simple
Python script to generate basic features such as total area covered in pixel, number of text
constituents, their variance in x-coordinates, average height and the-like.

Furthermore, we provide a tool chain to use the JAMF framework [SWW+08], a component-
based client/server system for building and simulating visual attention models. The “Coor-
dRect” JAMF component generates masks the same size as the Web page screen-shot based
on the node coordinates. It therefore allows region-wise analysis of the page rendering with
the default component set provided by JAMF, which is focused on visual feature extraction.
Results are read by the JAMF Python client and converted into feature vectors on a per-node
basis.

Clearly, the components and filter of JAMF model employed or using an entirely different
framework for actually visual feature extraction are per-application decisions to be made.

1This Extractor requires at least XUL Runner Version 1.9.2 (corresponding to Firefox Version 3.5) which is still
in beta at the time of this writing

11



2 The KrdWrd Architecture

12



3 The KrdWrd Annotation Framework –
Gathering Training Data for Sweeping
Web Pages

The KrdWrd System is an implementation of the architecture we presented in 2: It comprises
an extensive system for automated Web cleaning tasks.

For training the KrdWrd ML Engine, a substantial amount of hand-annotated data, viz. Web
pages, are needed. Following, we present the parts of the system that cover the acquisition of
training data, i.e. the steps before training data can be fed into a ML Engine.

Hence, after an overview of the sequence of steps needed to gather new training data in
3.1, an in-depth description of the processing steps before Web pages can be presented to
annotators in 3.2, presentation of the actual tool annotators use in 3.3, and the compilation
of their submitted results in 3.4, we will be ready to feed the KrdWrd Gold Standard to a ML
Engine. An exemplification, the KrdWrd ML Engine, is covered in 4.

3.1 System Overview

Two fundamental ideas behind this part of the system are: firstly, Web pages have a textual
representation, namely the text they contain, a structural representation, namely their DOM
tree, and a visual representation, namely their rendered view – all representations should be
considered when automatically cleaning Web pages, and consequently, all should be annotated
during acquisition of training data for ML tasks. Secondly, data acquisition for training of
supervised ML algorithms should preserve pristine, unmodified versions of Web pages – this
will help to reproduce results and to compare those of different architectures.

3.1.1 Functional Walk-Through

Gathering a set of sample pages is at the beginning of tagging new data. The process needs to
be coordinated by the administrators of the system, i.e. server level access is needed to make
new corpora available for later tagging by users. The Process starts with a list of seed terms
which are used to construct an ad-hoc corpus of Web pages where the result is a list of Uniform
Resource Locators (URL1).

The URL list is then harvested, i.e. the according Web pages are downloaded and saved for
further processing. This process is coordinated by the administrators of the system and is
started as automated batch-job on the server where its input is the URL List and the result is
the set of downloaded Web pages and their content.

These Web Pages are then available online to users for tagging, i.e. there are no constraints
on who is able to access these pages; however, keeping track of who tagged what requires to
differentiate between users, and hence, registration with the system, viz. logging in. The Web

1see [@URL] for details – but also [@ADDR].

13



3 The KrdWrd Annotation Framework

pages are accessible via the KrdWrd Add-on in combination2 with the Web Services hosted on
[@KRDW, Web Site].

Users can tag new, alter or redisplay formerly tagged Web pages with the help of the KrdWrd
Add-on. The KrdWrd Add-on builds upon and extends the functionality of the Firefox [@FF]
browser and facilitates the visual tagging of Web pages, i.e. users are provided with an accurate
Web page presentation and annotation utility in a typical browsing environment. Readily (or
partly) tagged pages are directly sent back to the server for storage in the KrdWrd Corpus data
pool and for further processing.

Updated or newly submitted tagging results are regularly merged, i.e. submitted results
from different users for the same content are processed and compiled into a majority-driven
uniform view. This automated process uses a winner takes all strategy and runs regularly on
the server – without further ado. The merged content is stored in the KrdWrd data pool and
hence, available for browsing, viewing, and analysis by the KrdWrd Add-on2 and furthermore,
it can be used as training data for Machine Learning algorithms.

3.1.2 Implementation Survey

The KrdWrd Infrastructure consists of several components that bring along the overall func-
tionality of the system. They are run either on the KrdWrd Server or are part of the KrdWrd
Add-on and hence, build upon and extend the functionality of the Firefox browser. The Server
components are hosted on a Debian GNU/Linux [@DEB] powered machine. However, the re-
quirements3 are rather limited and many other standard linux - or linux-like - systems should
easily suffice, and even other platforms should be able to host the system. Nevertheless, the
KrdWrd Add-on strictly runs only as an extension of the Firefox browser, version 34.

Access to the system is given as HTTP Service hosted on krdwrd.org, an SSL-certified vir-
tual host running on an Apache Web Server [@HTTP] accompanied by mailing services, a
dedicated trac as Wiki and issue tracking system for software development (extended with
a mailing extension), and subversion [@SVN] as version control system. The interfacing be-
tween the KrdWrd Add-on and the Web Server is done via CGI [@CGI] scripts, which itself are
mostly written in the Python programming language [@PYTH].

3.2 Pre-Processing: Harvesting Web Pages

Generally, pre-processing is the first step to streamline external data for further processing
in a customised data-processing pipeline, and in the KrdWrd System it constitutes harvesting
data, i.e. grab Web pages off the web, convert them into UTF-8 encoding [@UNIC], make links
on these pages relative [@W3ba], and compile them into a corpus that can be tagged by users.

3.2.1 URL List Generation

For downloading pages off the Web the KrdWrd System needs to be told which pages to grab.
But because we are interested in a wide spectrum of layouts we need to scatter the URLs to
be fetched over different web sites, i.e. we are not interested in having a small number of site

2Indeed, the data is accessible with any browser – but the KrdWrd Add-on enhances the experience.
3These include sed, awk, python, bash, subversion, XULRunner, wwwoffle, apache, R.
4But it could be converted into a self-contained XULRunner application.

14

krdwrd.org


3.2 Pre-Processing: Harvesting Web Pages

URLs and then recursively grab these sites but we want a large number of URLs from different
sites.

To this end we utilise the BootCaT toolkit[BB04] to construct an ad-hoc URL list: a set
of seed terms is used for automated queries against a Web search engine, the top results for
querying random combinations of the terms are downloaded and analysed, i.e. unigram term
counts from all retrieved Web pages are compared with the corresponding counts from a ref-
erence corpus. In the last step5 multi-word terms are extracted and used a seed terms for the
query process. However, we used the top results from these last multi-word queries as URL
List.

en détail: We used the BootCaT installation of the Institute of Cognitive Science’s Computa-
tional Linguistics group at the University of Osnabrück[@CL] – at the time of writing this was
the initial version with the updates from February 2007.

The topic of the seed terms for the BootCaT procedure was “Nuremberg in the Middle Ages”,
the terms were: history, coffee, salt, spices, trade road, toll, metal, silk, patrician, pirate, goods,
merchant, the Internet search engine BootCaT used was Yahoo![@YAHO], the reference corpus
was the British National Corpus (BNC)6, and the procedure resulted in 658 URLs from unique
domains; note that we departed from the original BootCaT recipe and only allowed one URL
per domain. This URL list was passed on to the KrdWrd Harvester – but, of course, any URL
list can be feed to the Harvester.

The seed terms, the command sequence, and the URL list can be found at https://krdwrd.
org/trac/browser/tags/harvest/canola.

3.2.2 The KrdWrd App: Harvesting Mode

The automated downloading of Web content is done by the KrdWrd App in harvesting mode,
namely by feeding the App an URL list as input and have it then fetch and store downloaded
content for further processing. Moreover this process resolves three significant concerns:

Enforce UTF-8 Character Encoding for grabbed documents – character encoding has been
the cause for much hassle in data processing, and to eliminate it – or at least reduce it to
a minimum – we transform every document into UTF-8 encoding [@UNIC] and make
sure that successive processing steps are UTF-8 aware.

Change the <BASE> Element for grabbed documents (or insert one) [@W3ba, @ADDR]
– for smooth integration into the KrdWrd system we change this attribute such that
relative URIs are resolved relative to our system.

Surround Text with <KW> Elements in grabbed documents – these additional elements
splits up text: when large amounts of text fall under a single node in the DOM tree,
i.e. when the whole text can only be selected as a whole, these elements loosen this re-
striction but, on the other hand, do not affect the rendering of the Web page or other
processing steps.

5Though, this loop can be repeated multiple times with unigram term counts until the corpus of retrieved Web
pages reaches a certain size or matches other characteristics.

6The data was obtained under the terms of the BNC End User Licence. For information and licensing condi-
tions relating to the BNC, please see the web site at http://www.natcorp.ox.ac.uk

15

https://krdwrd.org/trac/browser/tags/harvest/canola
https://krdwrd.org/trac/browser/tags/harvest/canola
http://www.natcorp.ox.ac.uk


3 The KrdWrd Annotation Framework

Finally, the System extracts the textual content of each page and only considers documents
of certain text length as appropriate for further processing and discards all others. The rational
is that very short and very long web pages rarely contain useful samples of interesting running
text.

en détail: We used the previously generated URL list and fed it to the KrdWrd App in har-
vesting mode, which then retrieved Web pages via the KrdWrd Proxy (see 3.2.3) just as if
someone operating a Firefox browser had viewed them. The textual length restriction was set
to only allow for a decent amount of text, which we thought holds for documents consisting
of 500 to 6,000 words7. Finally, we manually inspected the remaining grabbed pages for prob-
lems arising from limitations – and had to discard two files. Overall, the process resulted in
228 pages that were considered for further processing.

The currently used ’harvester’ can be found at https://krdwrd.org/trac/browser/trunk/
src/app/harvest.sh.

3.2.3 The KrdWrd Proxy

The KrdWrd Harvester and the KrdWrd Add-on make all Internet connections through the
KrdWrd Proxy. This storage fills up with the harvested Web pages but also with all directly-
linked material, which is included via absolute or relative links, or e.g. generated by scripts.
Often, this ‘additional’ material is considered superfluous and therefore discarded; moreover,
the non-textual content of Web pages is often stripped off – or the textual or structural content
altered. See e.g. [@POTA, @CEan], or more generally [KB06, FNKdS07, EKS08].

Unfortunately, this renders it very difficult – or even impossible – to compare work in cases
where one utilises data that is not available any more or only in an altered form. This is to
say indeed, in the end we also want text but with different requirements of competing sys-
tems the base material must be pristine, i.e. the most ‘natural’ and the least modified version
of data should be conserved. To this end, we utilise the World Wide Web Offline Explorer
(wwwoffle)[@WOFF] as a proxy, which can be operated in two modes: online and offline.

wwwoffle Online Mode allows for caching of pages that are downloaded for later review,
use with one or more external proxies, control over which pages cannot be accessed and which
pages are not to be stored in the cache.

wwwoffle Offline Mode allows for use of normal browser to follow links, control which
pages can be requested, and for non-cached access to Intranet servers.

wwwoffle generally allows for a searchable cache index with the addition of included pro-
grams, and viewable indexes sorted by name, date, server domain name, type of file. The
configuration is done in a single configuration file, which can be accessed via an interactive
web page to allow editing; user customisable error and information pages are also easily con-
figurable.

During pre-processing the KrdWrd Online Proxy is used; it runs as a daemon and responds

7We used the linux wc[@WC] command, i.e. a word is a string of characters delimited by white space charac-
ters.

16

https://krdwrd.org/trac/browser/trunk/src/app/harvest.sh
https://krdwrd.org/trac/browser/trunk/src/app/harvest.sh


3.3 Manual Annotation: Classification of Web-Page Content by Human Annotators

only to internal requests but material that is downloaded in online mode will be available for
requests in offline mode.

The KrdWrd Offline Proxy runs as a daemon and responds to network requests from the
Internet, it is publicly available8, and can be accessed via proxy.krdwrd.org:8080. This
proxy does not fetch new pages into the KrdWrd Cache, i.e. all Web page request coming from
the client computer, e.g. from a user surfing the net with an installed and enabled KrdWrd
Add-on, will be filtered and only requests for content that had previously been downloaded
in online mode will be allowed. The offline mode is automatically configured by the KrdWrd
Add-on .

The Proxy data pool holds unmodified, re-loadable (near9) copies of all the Web pages from
within the KrdWrd Corpus.

en détail: We set-up and configured two instances of wwwoffle on the KrdWrd Host; one
publicly available, operating in offline mode and constituting the KrdWrd Offline Proxy, and
one for use by the KrdWrd Harvester, operating in online mode and constituting the KrdWrd
Online Proxy. The two instances are operational at the same time and they share the same data
pool; this is easily possible and does not result in data inconsistencies because the offline proxy
only reads data from the pool – it never writes data to the pool. Additionally, we configured
the online proxy to never re-grab material, i.e. the first encounter of new content will be the
one the systems keeps.

The currently used configuration can be found at https://krdwrd.org/trac/browser/
trunk/src/utils/wwwoffle.

3.3 Manual Annotation: Classification of Web-Page Content
by Human Annotators

The pre-processed data is now ready to be processed by annotators, and we will present the
setting in which the annotated data, the foundation for the gold standard, was acquired.

The KrdWrd System incorporates the KrdWrd Add-on, an extension for the Firefox browser,
which facilitates the visual tagging of Web pages. However, users also need to be told what to
tag how – therefore, a refined version of the official ‘CLEANEVAL: Guidelines for annotators’
[@CEan] is provided, and – additionally – users are encouraged to work through a small tuto-
rial to get acquainted with different aspects of how to apply the guidelines to real-world Web
pages. The snag of finding people to actually put the system into use was kindly solved by
the lecturers of the Introduction to Computational Linguistics class of 2008 from the Cognitive
Science Program at the University of Osnabrück by means of an homework assignment for
students.

3.3.1 The KrdWrd Add-on: An Annotation Platform

The KrdWrd Add-on receives data from the server, modifies the rendering of Web pages by
highlighting selected text, supports the tagging of different parts of a page differently, and
finally, sends an annotated page back to the server for storage and subsequent processing.

8with the exception that there exists a dummy login. . .
9Dynamically generated links are challenging and may lead to missing content.

17

proxy.krdwrd.org:8080
https://krdwrd.org/trac/browser/trunk/src/utils/wwwoffle
https://krdwrd.org/trac/browser/trunk/src/utils/wwwoffle


3 The KrdWrd Annotation Framework

It extends the functionality of the Firefox browser with a status-bar menu where – beside
some administrative tasks – the user may choose to put the current browser tab into tracking
mode. In this mode pre-defined colour coded tags are integrated into the familiar view of a
Web page A) to highlight the part of the page where the mouse is hovering over and thereby,
is subject to tagging, and B) to highlight the already tagged parts of the page.

The annotation process is straightforward (cf. figure 3.1 for a partly annotated page):

1. Users move the mouse over the Web page and the block of text under the mouse pointer
is highlighted (Sometimes this block will be rather small, sometimes it may cover large
portions of text),

2. Users assign tags to the highlighted blocks by either using assigned keyboard shortcuts
or via entries in the context menu (Afterwards, these blocks stay coloured in the respec-
tive colours of the assigned tags),

3. Users submit the page, i.e. the Web page and the incorporated tags are transfered to the
server – this is done by pressing a shortcut or via an entry in the status-bar menu (The
tagged page, or a partly tagged page, for that matter, can be re-submitted to the server),
and

4. The KrdWrd System serves a new, untagged page for tagging10.

Figure 3.1: We used the lovely colour fuchsia to highlight the part of the page where the mouse
is hovering over, and the colours red, yellow, and green11 for the already tagged
parts, where red corresponded to Bad, yellow to Unknown, and green to Good
(cf. 3.3.2 for details).

10This new page is randomly selected among the set of pages with the lowest count of aggregated submissions
per user, i.e. at large, the submissions will be evenly distributed over the corpus – but cf. 3.3

18



3.3 Manual Annotation: Classification of Web-Page Content by Human Annotators

Furthermore, the KrdWrd Add-on is accompanied by a manual [Krd] (cf. appendix A),
which explains how to install the Add-on, get started with tagging pages, how to actually tag
them, i.e. it includes the annotation guidelines, and also gives some tips & tricks on common
tasks and problems.

The Add-on is available from https://krdwrd.org/trac/wiki/AddOn.

3.3.2 The KrdWrd Annotation Guidelines

The KrdWrd Annotation Guidelines specify which tag should be assigned to particular kinds
of text. We used the CleanEval (CE) annotation guidelines as a start (cf. [@CEan]), and made
a few substantial changes however, because we realised that there were several cases in which
their guidelines were insufficient.

The most important change we made was the addition of a third tag ‘uncertain’ whereas
originally, only the two tags ‘good’ and ‘bad’ were available. It had soon become apparent that
on some Web pages there were passages that we did not want to be part of a corpus (i.e. that
we did not want to tag ‘good’) but that we did not want to throw out altogether either (i.e. tag
them as ‘bad’). We also decided to tag all captions as ‘uncertain’.

Another rationale behind this introduction of this third tag was that we might want to pro-
cess this data at a later stage. Also note that in [SMP08] other CE participants also used a
three-element tag set.

We adopted the following guidelines from the CE contest, and all of these items were sup-
posed to be tagged ‘bad’:

• Navigation information

• Copyright notices and other legal information

• Standard header, footer, and template material that are repeated across (a subset of) the
pages of the same site

We modified the requirement to clean Web pages of internal and external link lists and of
advertisement slightly: The KrdWrd Guidelines state that all (hyper-)links that are not part
of the text are supposed to be tagged as ‘bad’. This, of course, includes link lists of various
kinds, but preserves links that are grammatically embedded in ‘good’ text. We also restricted
ourselves as to discard advertisement from external sites only. Some of the pages were pages
about certain products, i.e. advertisement, but we did not want to exclude these texts (if they
fulfilled our requirements for ‘good’ text, as defined below).

The two sorts of text, we did not exclude specifically (as the CE guidelines did), were Web-
spam, such as automated postings by spammer or blogger, and cited passages. Instead, we
required ‘good’ text to consist of complete and grammatical English sentences that did not
contain ‘non-words’ such as file names. That way, we filter out automatically generated text
only if it is not grammatical or does not make up complete sentences, and keep text that can
be useful for information extraction with statistical models.

Our refined annotation guidelines still leave some small room for uncertainties (but proba-
bly all such guidelines suffer from this problem). We are optimistic, however, that they are a

11fuchsia – there is a short story behind this color: https://krdwrd.org/trac/wiki/KrdWrd – red, yellow,
and green, respectively

19

https://krdwrd.org/trac/wiki/AddOn
https://krdwrd.org/trac/wiki/KrdWrd


3 The KrdWrd Annotation Framework

clear improvement over the original CE guidelines and that our Web corpus will only contain
complete and grammatical English sentences that contain ‘normal’ words only.

The annotation guidelines are available from https://krdwrd.org/manual/html/.

3.3.3 The KrdWrd Tutorial: Training for the Annotators

For initial practice, we developed an interactive tutorial that can be completed online (as fea-
ture of an installed Add-on).

The interactive tutorial can be accessed from the status bar by clicking ‘Start Tutorial’, and
is designed to practice the annotation process itself and to learn how to use the three different
tags correctly. Eleven sample pages are displayed one after another, ranging from easy to
difficult (these are the same samples as in the ’How to Tag Pages’ section of the manual).

The user is asked to tag the displayed pages according to the guidelines presented in the
manual. We inserted a validation step between the clicking of ‘Submit’ and the presentation of
the next page, giving the user feedback on whether or not she used the tags correctly. Passages
that are tagged in accordance with our annotations are displayed in a light-coloured version
of the original tag, i.e. text correctly tagged as ‘bad’ will be light-red, ‘good’ text will be light-
green, and text that was tagged correctly as ‘uncertain’ will be light-yellow. The passages with
differing annotations are displayed in the colour in which they should have been tagged, using
the normal colours, i.e. saturated red, green, and yellow (cf. 2.3). After clicking ‘Next Page’ on
the right top of the screen, the next page will be shown.

If a user should decide to quit the interactive tutorial before having tagged all eleven sample
pages, the next time she opens the tutorial, it will begin with the first of the pages that have
not been tagged, yet. And should a user want to start the tutorial from the beginning, she
can delete previous annotations via ‘My Stats’ in the status bar. Then, the next time the tuto-
rial is opened it will start from the very beginning. By pressing ‘Start Tutorial’ in the status
bar during the practice and before the submission of the current page, that same page will be
displayed again, un-annotated. When using ‘Start Tutorial’ after a page’s submission and be-
fore clicking ‘Next Page’ in the notification box at the top, the next page of the tutorial will be
shown.

As stated above, it is our goal that the interactive tutorial will help users getting used to
the annotation process, and we are also optimistic that it helps understanding and correctly
applying the tagging guidelines as presented in the manual.

3.3.4 The KrdWrd Assignment: A Competitive Shared Annotation Task

Finally, our efforts were incorporated into an assignment for the class ‘Introduction to Com-
putational Linguistics’ where – from a maximum number of 100 students – 68 completed the
assignment, i.e. their effort was worth at least 50% of the assignment’s total regular credits.
The assignment was handed out 7, July, was due 18, July 2008, and consisted of two exercises:

1. The first task was to complete the interactive online tutorial, i.e. the students had to
go through the eleven sample pages, annotate them, and – ideally – think about the
feedback. This task was worth 20% of the credits.

2. The second task was to tag pages from our assembled corpus; 15 tagged pages were
worth 80% of the credits and 10 additional pages were worth an extra that was counted

20

https://krdwrd.org/manual/html/


3.4 The Gold Standard: Compilation and Analysis of manually annotated Data

towards the credits of all other homework assignments, i.e. students could make up for
‘lost’ credits12.

The assignment is enclosed in the appendix (cf. A).

3.4 The Gold Standard: Compilation and Analysis of manually
annotated Data

The data for the gold standard was collected via the KrdWrd Add-on (cf. 3.3.1) as an homework
assignment (cf. 3.3.4) for a Computational Linguistics class, which is a second year undergrad-
uate Cognitive Science class at the University of Osnabrück. The Annotators were introduced
to the KrdWrd Annotation Guidelines (cf. 3.3.2) by means of the KrdWrd Tutorial (cf. 3.3.3),
and were supposed to work independently (e.g. from their home PC) though, could have sat
near each other. However, we did take precautions against naïve copying by enforcing au-
thentication for the users with their student accounts, hiding other users’ results, and serving
random pages for tagging – thus, even if students were exchanging information it could rather
have been about the assignment and the tagging in general than a specific Web site in particu-
lar.

3.4.1 Initial Observations

From 100 student subscribed to the class 69 installed the Add-on and submitted at least one
page (not necessarily a tagged one, though. . . ). This was also about the ratio of students who
took the final exam for this course hence, we can say that almost every students seriously
interested in finishing this class also took the homework assignment.

The majority of submissions came within the last 4 days of the period of time they were
granted to finish the assignment – with a major peak at the last day; which, according to all we
know, is quite common. This has probably also led to only very few people making use of the
re-submit feature, i.e. continuing or modifying an already submitted page.

The possibility to interact with the KrdWrd Team, e.g. to solve installation problems, or
to exchange information via an e-Mail list we had set up for this purpose was rarely used
(cf. https://krdwrd.org/trac/mail/threads). The few reported problems however, led
to some beneficial improvements of the documentation.

Our initial Data Set (before further clean-up): 228 Web pages, consisting of almost 440,000
words and over 2.6 million characters, were independently processed by 69 users who submit-
ted 1767 results (re-submits for a page counted only once), which is an average of 7.75 submis-
sions per page.

3.4.2 The KrdWrd App: Annotations Merging Mode

The KrdWrd App in merging mode compares the initially grabed master with the user submit-
ted results and, for every text node in the DOM tree, computes a majority vote and assigns this
as the gold standard tag to the node of a newly created document.

12As a matter of fact, 43 students received the total of 100% regular credits + 100% extra credits.

21

https://krdwrd.org/trac/mail/threads


3 The KrdWrd Annotation Framework

The process is carried out offline on the server: the input is one URL of a master document
and the URLs of the respective user submitted results. After reading all documents the DOM
trees of all documents are traversed top-down and tags along the traversal are propagated fur-
ther down as long as, no more specific tag is encountered, i.e. a tag can not overwrite another
one further down the path but is pushed down as far as possible (cf. figure 3.2 for an illustra-
tion). At the end of each path in the tree the assigned tags are counted. After having traversed
all documents a sanity check is carried out13 14 namely, are there documents which still have
unseen nodes, or are there documents which had less nodes than the master document? In
either case, these submissions are discarded from further processing.

The remaining submissions are taken into account for the majority vote on each node of the
master document. Another document is generated, which includes the resulting tags.

Figure 3.2: On the left is the un-propagated page with major parts having been tagged green
and red. On the right is the propagated version where the green has been pushed
down into the text nodes; the same holds for red but note that the heading in yellow
has not been overwritten.

3.4.3 Merge Analysis

Before we started to analyse the results of the merging process we excluded the results of one
user who had only submitted one page. Then, the merging process revealed the following
problematic cases (usually by rejecting user results on grounds of the sanity check): 2 pages
with no results left to merge, 3 pages with only one result to merge, 2 more pages with only
two result to merge, 1 page with four results to merge, and 1 page that could not be merged
due to an error in our application15. We also excluded all these cases from further processing
(cf. figure 3.3).

We continued to do a plausibility check for the submitted results: we computed a tag-bias
for each user, where we compared each user’s tendency to chose a tag for a node with the actual
winning tags for nodes. This computation revealed 4 cases in which users showed strong biases
towards certain tags16. We also excluded all results from these users.

13We also implemented another sanity check namely, to check whether the textual content in the nodes is
identical but dropped this condition – mainly because the few encounters were false positives and it had negative
impact on performance as well.

14The overall handling of JavaScript is not satisfactory. To address the diversions between submits occurring
after dynamic client-side JavaScript execution on different clients, the Add-on could hook into the node creation
and clone processes. They could be suppressed entirely or newly created nodes could grow a special id tag to help
identifying them later.

15We fixed the error but this rendered the submitted pages unusable – newly submitted pages will be mergable.
16Manual inspection of these cases showed that the users obviously only wanted to raise their tagged-pages

22



3.4 The Gold Standard: Compilation and Analysis of manually annotated Data

Submissions

N
um

be
r 

of
 P

ag
es

0 2 4 6 8 10 12 14

0
20

40
60

80
10

0

Figure 3.3: Number of Pages with x Submissions - the dividing line at 5 Submissions shows
the cut-off, i.e. pages with less then 5 Submissions were excluded from further pro-
cessing. The observant reader may notice that we said the annotations were evenly
distributed: this is the case, now. We had not turned on this feature when we started
collecting the data, however.

The resulting and final Data Set: 219 Web pages, consisting of more than 420,000 words
and over 2.5 million characters, were independently processed by 64 users who submitted 1595
results (re-submits for a page counted only once), which is an average of 7.28 submissions per
page.

We continued our analyses of this new data at hand, and looked into the timestamps we col-
lected for the submissions: therefore, we summed up all the deltas between two submissions
for each user and calculated the duration each user saw a single page; then, we computed a
reasonable upper bound for how log a submit action might take, i.e. the hypothesis was that
page-view times longer than a certain amount of time were actually breaks. To this end, we
detected outliers17 and discarded all respective submissions (the calculated[R D08] result was
700s).

The calculated time data suggests that:

• the majority of users spent between 56 and 88 minutes on the assignment with an aver-
age of 71 minutes (cf. figure 3.4 for details),

• average per-page annotation time drops below three minutes (cf. figure 3.5), and

• the first pages after the tutorial are still more challenging than later ones (cf. 3.6).

count and therefore, just tagged very few nodes – typically high up in the DOM tree – which were then propagated
downwards.

17This is quite standard: x values outside the range Q1− 1.5 ∗ IQR < x < 1.5 ∗ IQR + Q3 were considered
outliers.

23



3 The KrdWrd Annotation Framework

Minutes spent on Assignment

N
um

be
r 

of
 U

se
rs

20 40 60 80 100 120 140

0
5

10
15

20
25

Figure 3.4: Time in Minutes spent by y Users on the Assignment, i.e. how much Time did a
User interact with the Add-on to tag her share of the Canola Corpus.

For the overall inter-coder agreement of the remaining submissions we calculated Fleiss’s
multi-π as layed out in [AP08]: for each Web page the remaining submissions were set as
coders, and the tagged DOM nodes as items – the three categories were fixed. This resulted
in an average inter-coder agreement over all pages of 0.85 (cf. 3.8), which we think is – at
least – substantial. Considering that these submissions were the basis for the merge process
we believe that the Canola Gold Standard Corpus is a solid basis for further processing. Fur-
thermore, this metric could be used for comparison of cleaning results in general – maybe
normalised for the number of words or characters per DOM node.

Remark: we looked into the pages at the lower end of the agreement spectrum and found
that they tended to be quite long and were often discussion forum pages, i.e. with many alter-
ations in the tags that were to assign. Given that similar shorter pages achieved better results,
it seems that even our already quite low boundary of 6,000 words per page resulted in pages
that were frustrating to process.

24



3.4 The Gold Standard: Compilation and Analysis of manually annotated Data

1 2 3 4 5

Minutes spent on Page

Figure 3.5: Minutes spent on a single Page accross all annotations of the Canola corpus.

2 4 6 8 10 12 14

10
30

Sequence Position

D
el

ta
 in

 s

Figure 3.6: Smoothened average of differences in seconds between annotation times of all
users at Position x in their specific sequences of Web Pages and the mean of all other
users who processed identical pages at a later time in their respective sequences.

25



3 The KrdWrd Annotation Framework

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51

Number of processed Pages

N
um

be
r 

of
 U

se
rs

0
20

40
60

Figure 3.7: Aggregated counts for the Number of Users who processed at least x Number of
Pages. Note the two steps at 15 and 25 pages, which correspond to the obligatory
and the optional number of pages in the assignment. Also note that there were
quite many students who went far beyond the requirement for the assignment.

Inter−Coder Agreement

N
um

be
r 

of
 P

ag
es

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
20

40
60

80

Figure 3.8: Inter-coder agreement between submissions for pages over the Canola corpus.

26



4 The KrdWrd Machine Learning
Framework – Perceptually Driven
Sweeping of Web Pages

4.1 Extraction Pipeline

Feature Extraction commences by running the KrdWrd Application Extraction Pipeline over
the merged data obtained during annotation. For the Canola corpus, it took 2.5 seconds on av-
erage per page to generate text (2.5 million characters total), DOM information (46,575 nodes
total), screen-shots (avg. size 997x4652 pixels) and a file with the target class for each text
node.

We only used the stock KrdWrd features on the DOM tree and visual pipeline, with a simple
JAMF graph as a showcase (c.f. figure 4.1). For computing textual features, we borrowed
Victor’s [SMP08] text feature extractor.

Load Image (ImageLoader)

Color Splitter (ColorSplitter)

CoordMask (CoordMask)Luminance Contrast (LuminanceContrast)

int window_size = 5

Multiply (Mul)

Texture Contrast (LuminanceContrast)

int window_size = 11

Z-Trans (ZTransformation)

MatInfo (MatInfo)

Figure 4.1: The simple JAMF graph used for the case study

27



4 The KrdWrd Machine Learning Framework – Perceptually Driven Sweeping of Web Pages

Table 4.1: 10-fold cross validated classification test results for different combinations of the
textual (cl), DOM-property based (dom) and visual (viz) pipelines on the Canola
data set obtained using stock SVM regression with a RBF kernel.

Modules Number of Features Accuracy Precision Recall

cl 21 86% 61% 76%
dom * 13 65% 64% 56%
viz * 8 86% 64% 82%
cl dom * 34 67% 74% 57%
dom viz * 21 67% 72% 59%
cl viz 29 86% 63% 78%
cl dom viz 42 68% 76% 58%
* data obtained by training on reduced number of input vectors.

4.2 Experiment

We used the data gathered by feature extraction for training a Support Vector Machine [CL01].
We used an RBF kernel with optimal parameters determined by a simple grid search to create
ad-hoc models on a per-pipeline basis. The total number of feature vectors corresponded
to the number of text nodes in the corpus and was 46,575. Vector lengths for the different
pipelines and test results from 10-fold cross validation are shown in table 4.1.

Although the results for the single pipelines look quite promising – especially the visual
pipeline performed surprisingly well given its limited input – combinations of feature sets in
a single SVM model perform only marginally better. We therefore suggest running separate
classifiers on the feature sets and only merging their results later, possibly in a weighted voting
scheme. DOM features would certainly benefit most from e.g. a classifier that can work on
structured data.

4.3 Inspecting Classifier Results

The classification results can be back-projected into the DOM-trees using the Application’s
diff function. As in the tutorial for annotators, it produces a visual diff, showing where the
classifier failed. Note that these results are just Web pages, so they can be viewed anywhere
without the help of the Add-on. This quickly turned out to be a valuable tool for evaluation of
classification results.

4.4 Further Work

The KrdWrd Application and supporting infrastructure are a reliable platform under a real-
world usage scenario.

But for result analysis, we would like to expand the visual diff generated from classification
results. Showing results from separate runs on different subsets of the data or different param-
eters on one page would facilitate manual data inspection. Presenting selected feature values
per node might also help in developing new feature extractors, especially in the DOM context.

Even though we showed the broad set of features for text, structure and imagery contribute
to classification there is still much to be researched until the next CleanEval contest.

28



5 Summary and Outlook

A recent publication stated that:

To date, cleaning has been done in isolation by each group using web data (and
it has not been seen as interesting enough to publish on). Resources have not
been pooled, and it has often not been done well. In CleanEval we put cleaning
centre-stage. The goals of the exercise are to identify good strategies and to foster
sharing of ideas and programs. [BCKS08]

Employing KrdWrd in the Canola case study showed that we achieved what we set out for
and we also gained valuable experience for possible improvements: We delivered improved
Annotation Guidelines, a broad Annotation Set-up, redefined the Output Document Format,
created a solid Development Set for ML based Web cleaning task, and returned with the Scoring
Metric to an often used – but still highly debated – metric.

We believe the work put forward in the KrdWrd Project is beneficial for research in the
context of Web as Corpus but also in related areas, e.g. Content Extraction and Data Mining:
they may both use our system for quick learning of extraction patters for single sites they want
to harvest for content and thus, getting rid of unwanted clutter they usually need to fine-tune
differently for every site.

Furthermore, the visual analysis of Web pages will certainly become more important and
the KrdWrd System may be a good candidate for bridging the gap into this promising future.

29



5 Summary and Outlook

30



A Appendix

A.1 Projekt Link

KrdWrd work is coordinated over a Trac[@TRAC] system reachable via:

http://krdwrd.org.

The system features documentation, bug tracking, source code and history. Source code met-
rics are provided via https://www.ohloh.net/ and show appx. 2500 relevant lines of code
for KrdWrd.

A.2 Enclosed Documents

Following – begining on the next page – are the KrdWrd Homework Assignment and the Krd-
Wrd Add-on Manual.

31

http://krdwrd.org
https://www.ohloh.net/


Introduction to Computational Linguistics KrdWrd Homework

KrdWrd Homework
due Friday, 18.07.2008

The main objective of this assignment is to give you first hand experience on a competitive manual
tagging task on pages from the World Wide Web, where you will use an online tool to tag the pages.
It is competitive because each of your individual results will compete with others’ results on identical
pages and it is manual because you will actually have to do the task.

Pages from the Web because the Web is an unprecedented and virtually inexhaustible source of au-
thentic natural language data and offers the NLP community an opportunity to train statistical models
on much larger amounts of data than was previously possible. However, after crawling content from
the Web the subsequent steps, namely, language identification, tokenising, lemmatising, part-of-speech
tagging, indexing, etc. suffer from ’large and messy’ training corpora and interesting regularities may
easily be lost among the countless duplicates, index and directory pages, Web spam, open or disguised
advertising, and boilerplate. Therefore, thorough preprocessing and cleaning of Web corpora is crucial
in order to obtain reliable frequency data.

The preprocessing can be achieved in many different ways, e.g. a näıve approach might use finite-state
tools with hand-crafted rules to remove unwanted content from Web pages. The KrdWrd project is
heading for a quite different approach:

1. Use the visual presentation of Web pages

2. Have an initial training set of Web pages annotated – the Gold Standard

3. Extract the visual, structural, and linguistic information to train a model using machine learning
algorithms

4. Use the model to automatically clean Web pages while building a corpus

The KrdWrd project homepage is available at http://krdwrd.org and this is also the place to get
started.

Exercise 1. (2 points)

Your task is to complete the online tutorial of the KrdWrd system, i.e. you have to launch Firefox1,
install the KrdWrd Add-on, get a copy of the manual, and go through the online tutorial.

1. Use Firefox to visit http://krdwrd.org and follow the instructions, i.e. install the necessary
certificate

2. Go to https://krdwrd.org/trac/wiki/AddOn and follow the installation steps for the add-on

3. Read through the manual – make sure to cover at least Introduction and Getting Started

4. Start the tutorial by selecting Start Tutorial from the KrdWrd broom status bar menu on the
lower right of your browser window

5. Read through the page – thoroughly – and finish the tutorial

1If you have not installed Firefox, yet, visit http://www.mozilla.com and download your copy.

SS 2008 KH-1 Evert & Bosch



Introduction to Computational Linguistics KrdWrd Homework

Exercise 2. (8+10 points)

Your task is to tag pages from the Canola corpus: 15 well tagged pages will be worth 8 credits2; well
tagged additional 10 pages will be worth 10 extra credits.

1. Select the Canola corpus from the Corpus menu and start tagging

2. Visit the My Stats page from time to time to see how many pages you have already tagged. . .

Notes:

• You can always interrupt tagging and continue at a later time: just select the Canola corpus
and continue.

• In case where something goes wrong go to https://krdwrd.org and use the search feature to
look for a solution.

• Iff you have not found a solution write a mail to krdwrd@krdwrd.org with a detailed problem
description, i.e.:

– What is the problem?

– What were the steps that led to the problem?

– Include the last lines of information from the Help/About Mozilla Firefox menu, i.e. the
ones that start with Mozilla/... and include the first line of information from the About
menu item in the add-on, i.e. the line krdwrd version 0.x.y.

* We know that well-written bug reports are an extra effort and encourage them. Every
unique substantial bug report leding to a fix in the add-on is worth a maximum of three
extra credits3.

• In case you have no other hardware to use you can use the computers in B10 aka. 31/412; however,
make sure to substitute every occurrence of Firefox with Iceweasel, i.e. s/Firefox/Iceweasel/g,
in all documentation.

2Together with Task 1 this corresponds to 100% of this assignment.
3However, you cannot exceed the 10 extra credits hard limit for this assignment.

SS 2008 KH-2 Evert & Bosch



The KrdWrd Add-on Manual

1 Introduction

”The availability of large text corpora has changed the scientific approach
to language in linguistics and cognitive science” [M&S]. Today, the by far
richest source for authentic natural language data is the World Wide Web,
and making it useful as a data source for scientific research is imperative.

Web pages, however, can not be used for computational linguistic process-
ing without filtering: They contain code for processing by the Web browser,
there are menus, headers, footers, form fields, teasers, out-links, spam-text –
all of which needs to be stripped.

The dimension of this task calls for an automated solution, the broadness
of the problem for machine learning based approaches. Part of the KrdWrd
project deals with the development of appropriate methods, but they require
hand-annotated pages for training.

The KrdWrd Add-on aims at making this kind of tagging of Web pages
possible. For users, we provide accurate Web page presentation and annota-
tion utilities in a typical browsing environment, while preserving the original
document and all the additional information contained therein.

2 Getting Started

In this section, we will give you information about how to use the tool. If
you have not installed it yet, go to krdwrd.org and get it. Of course, you will
need Firefox, too.

• Since the add-on depends on a special proxy server to connect to the
Internet - you can only grab and submit Web pages from the KrdWrd
corpora - it may be a good idea to create a separate profile just for
working with the add-on. If you want to create a profile but have no
idea how to do that, have a look here.



• When grabbing a page for the first time, or selecting a corpus for the
first time you will be asked to authenticate for the krdwrd Off-Line
Proxy. The username and password in the dialog box are already filled
in and it is save to leave the ”Use Password Manager to remember this
password” checked.

• The proxy server will deny all requests that are not part of the normal
add-on operation. If you ever see something like

it is most likely because you tried to surf the Web with the wrong Fire-
fox profile.

• You will be asked for authentication a second time. This authentica-
tion is for the KrdWrd Web site and requires your RZ Account1

1This is the same login as for Stud.IP and WebMail ; in case you want to ”Use Password
Manger” please also ”Use a master password” to protect your sensitive information.



• When you request a page from the corpus for the first time, Firefox
will popup a security warning. The warning says ”you have requested
an encrypted page that contains some unencrypted data”. The warning
is issued because the corpus page are issued unencrypted. Your login
credentials are never send to the server unencrypted, there is no reason
not to ignore this warning.

2.1 First Steps

• How to Use the Mouse
When moving the mouse over a Web page, you will notice that certain
areas are highlighted in pink. These are the blocks of text that you can
tag. Sometimes the pink areas are fairly small (single words or lines
of text), sometimes they are pretty large (whole paragraphs, or even
whole pages). Thus it makes sense to move the mouse around a little
before you actually start tagging because sometimes you want to tag
big areas as, say, ’bad’, and it saves you a lot of time if you do not
have to tag every single line or paragraph. As a rule of thumb, it often
makes sense to tag everything in red (’bad’), from top to bottom, and
only then start tagging smaller pieces in yellow or green (’uncertain’
or ’good’, respectively) (see also Examples, described on page 3.2,
Tips & Tricks, page 4).

• How to Choose the Tag

This section deals with assigning tags. If you want information on how
to choose the right tag to assign, go to the Annotation Guidlines on
page 3.1.



For tagging a pink-highlighted section as ’good’, ’bad’, or ’uncertain’,
you have two options: You can use (1) keyboard shortcuts (hotkeys)
or you can use (2) the context menu (rightclick).

1. Keyboard Shortcuts

– bad : ctrl+alt+1

– uncertain: ctrl+alt+2

– good : ctrl+alt+3

– clear annotation: ctrl+alt+4

2. Context Menu

– Rightclick when you are over the section you want to tag,
then choose KrdWrd, and then the tag you want to assign.

– Using the context menu is not recommended, however. It is
much more time-consuming to navigate the menu than to use
the keyboard shortcuts.

– Note also that if the mouse cursor leaves the menu area, a pos-
sibly different part of the page will be highlighted for tagging
(namely the part that is now ’under’ your mouse).

• Cookies and Certificates
When some of the pages are being loaded, your Web browser will ask
you whether you want to accept cookies (of course, depending on your
browser settings: If you use a separate profile for the KrdWrd add-on,
just allow all cookies, see Tips & Tricks, page 4). Actually, you do not
have to accept any cookies; however, nothing bad will happen if you
do accept them.



2.2 The Statusbar Menu

This section describes the status bar menu, depicted below.

• Tracking
Here you can turn on or off whether sections of the Web page you are
currently viewing are highlighted in pink. Usually there is no need to
disable tracking. However, in some rare cases, this might help you to
get a better view on a page before tagging it.

• Submit
When you are done tagging a page, i.e. when everything on the page is
green, red, or yellow, you can submit the page with this menu option -
and the next page will load automatically. For your convenience, you
can also use the keyboard shortcut options+shift+N.

• Grab Page
Clicking here loads a new, un-annotated page. Once you annotated the
whole corpus, you will be redirected to your personal statistics page.

• Corpus
Here you can select one of the (predefined) available corpora. But you
should stick to the Canola corpus for now.



• Utils
The options in this menu make your life easier when tagging pages.

– Propagate
Here you can explicitly propagate a given tag down to all sibling
nodes. This is helpful when you have a large portion that should
be tagged red but all its siblings should be tagged green. You can
then tag the parent node green, propagate, and re-tag the parent
node as red. This way you do not need to tag all the siblings
separately. (Try this on the Examples, described on page 3.2 and
check the Tips & Tricks, page 4.2).

– Toggle Sidebar
Clicking here opens the sidebar. In the sidebar you can see all
of the text in the current page and how it is tagged. A given
tag is usually propagated down to lower nodes in the DOM tree
automatically, but sometimes it may be unclear (i.e. not directly
visible in the page) how a particular portion of text is tagged. In
the sidebar you can easily see whether it is tagged red, green, or
yellow.

– Design Mode
This is a debugging feature and you must not use it while tagging
pages.

• My Stats
This menu option will send you to your KrdWrd account. There you
can see how many pages you have already tagged, and you can view,
re-submit and delete your tagged pages.

3 How to Tag Pages

3.1 Annotation Guidelines

In the previous section, we described how to use the tool and how to assign
tags. In the following, we give you guidelines regarding which tag should be
assigned to a particular kind of text.

• Everything that is boilerplate is tagged red. Boilerplate is . . .

1. all navigation information,



2. copyright information,

3. hyperlinks that are not part of the text,

4. all kinds of headers and footers.

→ Generally speaking, boilerplate is everything that can be used in-
terchangeably with any other Web page or could be left out without
changing the general content of the page.

• The following types of text are also tagged red:

1. incomplete sentences, or text in telegraphic style,

2. text containing ’non-words’ such as file names,

3. off-site advertisements (i.e. advertisement from an external page),

4. text in any other language than English,

5. lists and enumerations of any kind.

• All captions are tagged yellow. And also everything that does not
belong in the red or green category is tagged yellow.

• All text that is left is tagged green, i.e. . . .

1. text made up of complete sentences, even if it is in a list or
enumeration,

2. text that makes use of ’normal’ words.

3. text that is written in English.

Simple, isn’t it? You will notice that on some pages you can only high-
light very large areas, on others the choices are less restricted. If you tag an
element, the tag assigned is propagated to all elements that are contained in
this area. However, if you are not sure whether a specific element is entailed,
just tag it too to be on the safe side (remember the sidebar option mentioned
in the previous section!).

In a previous section, we said that as a rule of thumb, it often makes sense
to tag everything in red (’bad’), from top to bottom, and only then to start
tagging smaller pieces in yellow or green (’uncertain’ or ’good’, respectively).
The easiest way to tag a whole page red is to tag the outermost rim of the
page and tag that as ’bad’. Due to the tag propagation, the whole page is
now tagged as ’bad’. If you want to make sure that this is so, check the
sidebar (see above).



This may all be a bit confusing now. But fear not, in the next sections
you will have the possibility to check whether you understood everything.

3.2 Examples - Easy

• Example 1
This is a fairly standard Web page. Advertisements and boilerplate
should be easy to spot and easy to tag.

• Example 2
This should be easy, too.



• Example 3
Similar to Example 1 but you will have to invest a little more time,
since the layout is not as clean. Is there something that is not ’good’
in the text portion? How should you treat the headlines? What about
the headlines’ subtitles?

• Example 4
Somehow similar to Example 2. Why is even the text portion not
’good’?

3.3 Examples - Medium

• Example 5
Remember wich language you should tag (and that all text in another



language is bad). How should you tag the enumerations?

• Example 6
This one is all about enumerations.

• Example 7
Once you have decided how much of the text is junk, this is fairly easy.
Propagate is you friend.



• Example 8
This can be easy with the right strategy. One of the rare pages where
it is easier if you don’t start with tagging everything red first.

• Example 9
Sometimes there are no technical difficulties.



3.4 Examples - Hard

• Example 10
By now this should be easy for you.

• Example 12
This one is a bit like example 9 but with technical difficulties. You
might rather want to go to your dentist. This is really as bad as it can
be. If you can do this all other pages are a piece of cake.



4 Tips & Tricks

4.1 Keyboard Shortcuts

The default shortcuts for tags are

• bad : ctrl+alt+1

• uncertain: ctrl+alt+2

• good : ctrl+alt+3

• clear annotation: ctrl+alt+4

Depending on the size of your keyboard and your hands, this may really
hurt after some pages. But you can change the shortcuts. All you need is
the keyconfig add-on.

• Install keyconfig.

• Bring up the keyconfig menu by pressing Ctrl+Shift+F12. (Mac users
press Command+Shift+F12 ).

• The commands you want to change are named Tag Bad, Tag Good
and Tag Unknown.

• Close your Firefox window and reopen it; otherwise, the newly set
shortcuts will not work.



4.2 How and When To Use Propagate

There are two main uses for the propagate utility. Either there are many
good text portions embeded in bad text portions (or vice versa). Or there
are many small chunks of text cluttered around the page.

With propagate you can often get around tagging each chunk individually.

• Remember to check each text portion’s tag to be correct.

• It is important that text is tagged right, you don’t have to care about
the background color (and you really shouldn’t).

• Propagate will tag text and text only. And you really should not care
about the color of the background where the text is written on.

• Most pages in Examples - Medium, page 3.3 are significantly faster to
tag when using the propagate utility.

4.3 How to Undo

Currently the add-on has no readily available Undo function (which might
come handy in cases where you propagated the wrong tag). However, the
My Stats page lets you Delete certain, committed pages.



A.3 Trivia

["kæ:̆rd ­vĬrd]
Logo and Name are in reference to Kehrd Wärd (http://www.asn-spatz.de/), where cit-
izens clean their part of a Franconian town for the greater good. For the full experience a
Franconian has to mumble something along the lines of “gekehrt wird!”.

http://www.asn-spatz.de/


Bibliography

The Web sites referred to below were last accessed on March 20, 2009. In case of unavailability at a later time, we
recommend visiting the Internet Archive.

[AP08] Ron Artstein and Massimo Poesio. Inter-coder agreement for computational linguistics. Compu-
tational Linguistics, 34(4):555–596, 2008. Available from: http://www.mitpressjournals.org/
doi/abs/10.1162/coli.07-034-R2.

[BB04] Marco Baroni and Silvia Bernardini. BootCaT: Bootstrapping corpora and terms from the web.
In (ELRA) [EL04], pages 1313–1316. Available from: http://sslmit.unibo.it/~baroni/
publications/lrec2004/bootcat_lrec_2004.pdf.

[BCKS08] Marco Baroni, Francis Chantree, Kilgarriff, and Serge Sharoff. CleanEval: A competition for clean-
ing web pages. In (ELRA) [EL08]. Available from: http://clic.cimec.unitn.it/marco/
publications/lrec2008/lrec08-cleaneval.pdf.

[BDD+07] Daniel Bauer, Judith Degen, Xiaoye Deng, Priska Herger, Jan Gasthaus, Eugenie Giesbrecht, Lina
Jansen, Christin Kalina, Thorben Krüger, Robert Märtin, Martin Schmidt, Simon Scholler, Johannes
Steger, Egon Stemle, and Stefan Evert. FIASCO: Filtering the Internet by Automatic Subtree Clas-
sification, Osnabrück. In Fairon et al. [FNKdS07]. Available from: http://purl.org/stefan.
evert/PUB/BauerEtc2007_FIASCO.pdf.

[BNC] The British National Corpus (BNC) user licence. Online Version. Available from: http://www.
natcorp.ox.ac.uk/docs/licence.pdf [cited 032009].

[CL01] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[DW05] Pernilla Danielsson and Martijn Wagenmakers, editors. Proceedings of Corpus Linguistics 2005,
volume 1 of The Corpus Linguistics Conference Series, 2005. ISSN 1747-9398.

[EKS08] Stefan Evert, Adam Kilgarriff, and Serge Sharoff, editors. Can we beat Google? (WAC4 - 2008) –
Proceedings of the 4th web as corpus workshop, 06 2008. Available from: http://webascorpus.
sourceforge.net/download/WAC4_2008_Proceedings.pdf.

[EL04] European Language Resources Association (ELRA), editor. Proceedings of the 4th International Con-
ference on Language Resources and Evaluation (LREC 2004), Lisbon, Portugal, May 2004. Available
from: http://www.lrec-conf.org/lrec2004/.

[EL08] European Language Resources Association (ELRA), editor. Proceedings of the 6th International
Conference on Language Resources and Evaluation (LREC 2008), Marrakech, Morocco, May 2008.
Available from: http://www.lrec-conf.org/lrec2008/.

[Eve08] Stefan Evert. A lightweight and efficient tool for cleaning web pages. In (ELRA) [EL08]. Available
from: http://purl.org/stefan.evert/PUB/Evert2008_NCleaner.pdf.

[FNKdS07] Cédrick Fairon, Hubert Naets, Adam Kilgarriff, and Gilles-Maurice de Schryver, editors. Building
and Exploring Web Corpora (WAC3 - 2007) – Proceedings of the 3rd web as corpus workshop, incor-
porating CLEANEVAL, Louvain-la-Neuve, July 2007. Presses universitaires de Louvain.

[GHHW01] Ben Goodger, Ian Hickson, David Hyatt, and Chris Waterson. Xml user interface language (xul) 1.0.
Recommendation, Mozilla.org, 2001.

[GN00] Gregory Grefenstette and Julien Nioche. Estimation of english and non-english language use on the
WWW. In In Recherche d’Information Assistée par Ordinateur (RIAO), pages 237–246, 2000.

[HHW+04] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol, Jonathan Robie, Mike Champion,
and Steve Byrne. Document object model (dom) level 3 core specification. Recommendation, W3C,
2004.

[KB06] Adam Kilgarriff and Marco Baroni, editors. 11th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics – Proceedings of the 2nd International Workshop on Web as
Corpus, Trento, Italy, April 2006. Available from: http://www.aclweb.org/anthology-new/W/
W06/W06-1700.pdf.

49

http://archive.org
http://www.mitpressjournals.org/doi/abs/10.1162/coli.07-034-R2
http://www.mitpressjournals.org/doi/abs/10.1162/coli.07-034-R2
http://sslmit.unibo.it/~baroni/publications/lrec2004/bootcat_lrec_2004.pdf
http://sslmit.unibo.it/~baroni/publications/lrec2004/bootcat_lrec_2004.pdf
http://clic.cimec.unitn.it/marco/publications/lrec2008/lrec08-cleaneval.pdf
http://clic.cimec.unitn.it/marco/publications/lrec2008/lrec08-cleaneval.pdf
http://purl.org/stefan.evert/PUB/BauerEtc2007_FIASCO.pdf
http://purl.org/stefan.evert/PUB/BauerEtc2007_FIASCO.pdf
http://www.natcorp.ox.ac.uk/docs/licence.pdf
http://www.natcorp.ox.ac.uk/docs/licence.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://webascorpus.sourceforge.net/download/WAC4_2008_Proceedings.pdf
http://webascorpus.sourceforge.net/download/WAC4_2008_Proceedings.pdf
http://www.lrec-conf.org/lrec2004/
http://www.lrec-conf.org/lrec2008/
http://purl.org/stefan.evert/PUB/Evert2008_NCleaner.pdf
http://www.aclweb.org/anthology-new/W/W06/W06-1700.pdf
http://www.aclweb.org/anthology-new/W/W06/W06-1700.pdf


[KG03] Adam Kilgarriff and Gregory Grefenstette. Introduction to the special issue on the web as corpus.
Computational Linguistics, 29:333–347, 2003.

[Kil07] Adam Kilgarriff. Googleology is bad science. Comput. Linguist., 33(1):147–151, 2007.

[Krd] The KrdWrd Project. Add-on Manual. Available from: https://krdwrd.org/manual/manual.
pdf. Online Version at https://krdwrd.org/manual/html/.

[R D08] R Development Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria, 2008. Available from: http://www.R-project.
org. ISBN 3-900051-07-0.

[RHJRWY04] Song Ruihua, Liu Haifeng, Wen Ji-Rong, and Ma Wei-Ying. Learning important models for web
page blocks based on layout and content analysis. SIGKDD Explor. Newsl., 6(2):14–23, 2004.

[SMP08] Miroslav Spousta, Michal Marek, and Pavel Pecina. Victor: the web-page cleaning tool. In Ev-
ert et al. [EKS08]. Available from: http://webascorpus.sourceforge.net/download/WAC4_
2008_Proceedings.pdf.

[SWW+08] Johannes Steger, Niklas Wilming, Felix Wolfsteller, Nicolas Höning, and Peter König. The jamf
attention modelling framework. In Lucas Paletta and John K. Tsotsos, editors, WAPCV, volume
5395 of Lecture Notes in Computer Science, pages 153–165. Springer, 2008. Available from: http:
//dblp.uni-trier.de/db/conf/wapcv/wapcv2008.html#StegerWWHK08.

[@ADDR] W3C. Naming and addressing: URIs, URLs, . . . [online, cited 032009]. Available from: http:
//www.w3.org/Addressing/.

[@CEan] Marco Baroni and Serge Sharoff. CLEANEVAL: Guidelines for annotators [online, cited 032009].
Available from: http://cleaneval.sigwac.org.uk/annotation_guidelines.html.

[@CGI] The Common Gateway Interface (CGI) – a standard for external gateway programs to interface with
information servers such as http servers [online, cited 032009]. Available from: http://hoohoo.
ncsa.uiuc.edu/cgi/overview.html.

[@CL] The computational linguistics group of the Institute of Cognitive Science at the University of Os-
nabrück [online, cited 032009]. Available from: http://www.ikw.uni-osnabrueck.de/CL/.

[@DEB] Debian GNU/Linux: The free operating system for your computer [online, cited 032009]. Available
from: http://www.debian.org/.

[@FF] Firefox: The browser that has it all [online, cited 032009]. Available from: http://www.mozilla.
com/firefox/.

[@HTTP] The apache HTTP server project [online, cited 032009]. Available from: http://httpd.apache.
org/.

[@KRDW] Johannes M. Steger and Egon W. Stemle. The KrdWrd project web site [online, cited 032009]. Avail-
able from: https://krdwrd.org/.

[@POTA] A perl module intended to perform “boilerplate” stripping and other forms of filtering [on-
line, cited 032009]. Available from: http://sslmitdev-online.sslmit.unibo.it/wac/post_
processing.php.

[@PYTH] Python: An interpreted, interactive, object-oriented programming language [online, cited 032009].
Available from: http://www.python.org/.

[@SVN] An open source version control system [online, cited 032009]. Available from: http://
subversion.tigris.org/.

[@SZAG] Süddeutsche Zeitung Archiv – Allgemeine Geschäftsbedingungen [online, cited 032009]. Avail-
able from: http://www.sz-archiv.de/sueddeutsche-zeitung-archiv/onlinearchive/
sz-aboarchiv-ubersicht/sz-aboarchiv-agb.

[@TRAC] An enhanced wiki and issue tracking system for software development projects [online, cited
032009]. Available from: http://trac.edgewall.org/.

[@UNIC] Unicode home page [online, cited 032009]. Available from: http://www.unicode.org/.

[@URL] URI working Group. Uniform resource locators: A syntax for the expression of access informa-
tion of objects on the network [online, cited 032009]. Available from: http://www.w3.org/
Addressing/URL/url-spec.txt.

https://krdwrd.org/manual/manual.pdf
https://krdwrd.org/manual/manual.pdf
https://krdwrd.org/manual/html/
http://www.R-project.org
http://www.R-project.org
http://webascorpus.sourceforge.net/download/WAC4_2008_Proceedings.pdf
http://webascorpus.sourceforge.net/download/WAC4_2008_Proceedings.pdf
http://dblp.uni-trier.de/db/conf/wapcv/wapcv2008.html#StegerWWHK08
http://dblp.uni-trier.de/db/conf/wapcv/wapcv2008.html#StegerWWHK08
http://www.w3.org/Addressing/
http://www.w3.org/Addressing/
http://cleaneval.sigwac.org.uk/annotation_guidelines.html
http://hoohoo.ncsa.uiuc.edu/cgi/overview.html
http://hoohoo.ncsa.uiuc.edu/cgi/overview.html
http://www.ikw.uni-osnabrueck.de/CL/
http://www.debian.org/
http://www.mozilla.com/firefox/
http://www.mozilla.com/firefox/
http://httpd.apache.org/
http://httpd.apache.org/
https://krdwrd.org/
http://sslmitdev-online.sslmit.unibo.it/wac/post_processing.php
http://sslmitdev-online.sslmit.unibo.it/wac/post_processing.php
http://www.python.org/
http://subversion.tigris.org/
http://subversion.tigris.org/
http://www.sz-archiv.de/sueddeutsche-zeitung-archiv/onlinearchive/sz-aboarchiv-ubersicht/sz-aboarchiv-agb
http://www.sz-archiv.de/sueddeutsche-zeitung-archiv/onlinearchive/sz-aboarchiv-ubersicht/sz-aboarchiv-agb
http://trac.edgewall.org/
http://www.unicode.org/
http://www.w3.org/Addressing/URL/url-spec.txt
http://www.w3.org/Addressing/URL/url-spec.txt


[@W3ba] HTML 4.01 specification – path information: the BASE element [online, cited 032009]. Available
from: http://www.w3.org/TR/html401/struct/links.html#h-12.4.

[@WC] The wc command [online, cited 032009]. Available from: http://www.bellevuelinux.org/wc.
html.

[@WOFF] Andrew M. Bishop. A simple proxy server with special features for use with dial-up internet links
[online, cited 032009]. Available from: http://gedanken.demon.co.uk/wwwoffle/.

[@YAHO] The Yahoo! internet search engine [online, cited 032009]. Available from: http://www.yahoo.com.

http://www.w3.org/TR/html401/struct/links.html#h-12.4
http://www.bellevuelinux.org/wc.html
http://www.bellevuelinux.org/wc.html
http://gedanken.demon.co.uk/wwwoffle/
http://www.yahoo.com

	1 Introduction
	1.1 Motivation
	1.2 Relation to Recent Work
	1.3 Structure of the Work

	2 The KrdWrd Architecture
	2.1 Design
	2.1.1 Design Goals
	2.1.2 Requirements
	2.1.3 Core Architecture

	2.2 Implementation
	2.2.1 DOM Engine
	2.2.1.1 Firefox Add-on
	2.2.1.2 XUL Application 

	2.2.2 Storage and Control
	2.2.2.1 Web Server
	2.2.2.2 Database
	2.2.2.3 Proxy

	2.2.3 Feature Extractors
	2.2.3.1 Text
	2.2.3.2 Structural
	2.2.3.3 Visual



	3 The KrdWrd Annotation Framework
	3.1 System Overview
	3.1.1 Functional Walk-Through
	3.1.2 Implementation Survey

	3.2 Pre-Processing: Harvesting Web Pages
	3.2.1 URL List Generation
	3.2.2 The KrdWrd App: Harvesting Mode
	3.2.3 The KrdWrd Proxy

	3.3 Manual Annotation: Classification of Web-Page Content by Human Annotators
	3.3.1 The KrdWrd Add-on: An Annotation Platform
	3.3.2 The KrdWrd Annotation Guidelines
	3.3.3 The KrdWrd Tutorial: Training for the Annotators
	3.3.4 The KrdWrd Assignment: A Competitive Shared Annotation Task

	3.4 The Gold Standard: Compilation and Analysis of manually annotated Data
	3.4.1 Initial Observations
	3.4.2 The KrdWrd App: Annotations Merging Mode
	3.4.3 Merge Analysis


	4 The KrdWrd Machine Learning Framework -- Perceptually Driven Sweeping of Web Pages
	4.1 Extraction Pipeline
	4.2 Experiment
	4.3 Inspecting Classifier Results
	4.4 Further Work

	5 Summary and Outlook
	A Appendix
	A.1 Projekt Link
	A.2 Enclosed Documents
	The KrdWrd Homework Assignment
	The KrdWrd Add-on Manual

	A.3 Trivia
	Bibliography


