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Objectives

 

One of the questions we raised in Chapter 3 was: ÒHow do we determine the 
weight matrix and bias for perceptron networks with many inputs, where 
it is impossible to visualize the decision boundaries?Ó In this chapter we 
will describe an algorithm for 

 

training

 

 perceptron networks, so that they 
can 

 

learn

 

 to solve classification problems. We will begin by explaining what 
a learning rule is and will then develop the perceptron learning rule. We 
will conclude by discussing the advantages and limitations of the single-
layer perceptron network. This discussion will lead us into future chapters.
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Theory and Examples

 

In 1943, Warren McCulloch and Walter Pitts introduced one of the first ar-
tificial neurons [McPi43]. The main feature of their neuron model is that a 
weighted sum of input signals is compared to a threshold to determine the 
neuron output. When the sum is greater than or equal to the threshold, the 
output is 1. When the sum is less than the threshold, the output is 0. They 
went on to show that networks of these neurons could, in principle, com-
pute any arithmetic or logical function. Unlike biological networks, the pa-
rameters of their networks had to be designed, as no training method was 
available. However, the perceived connection between biology and digital 
computers generated a great deal of interest.

In the late 1950s, Frank Rosenblatt and several other researchers devel-
oped a class of neural networks called perceptrons. The neurons in these 
networks were similar to those of McCulloch and Pitts. RosenblattÕs key 
contribution was the introduction of a learning rule for training perceptron 
networks to solve pattern recognition problems [Rose58]. He proved that 
his learning rule will always converge to the correct network weights, if 
weights exist that solve the problem. Learning was simple and automatic. 
Examples of proper behavior were presented to the network, which learned 
from its mistakes. The perceptron could even learn when initialized with 
random values for its weights and biases.

Unfortunately, the perceptron network is inherently limited. These limita-
tions were widely publicized in the book 

 

Perceptrons

 

 [MiPa69] by Marvin 
Minsky and Seymour Papert. They demonstrated that the perceptron net-
works were incapable of implementing certain elementary functions. It 
was not until the 1980s that these limitations were overcome with im-
proved (multilayer) perceptron networks and associated learning rules. We 
will discuss these improvements in Chapters 11 and 12.

Today the perceptron is still viewed as an important network. It remains a 
fast and reliable network for the class of problems that it can solve. In ad-
dition, an understanding of the operations of the perceptron provides a 
good basis for understanding more complex networks. Thus, the perceptron 
network, and its associated learning rule, are well worth discussion here.

In the remainder of this chapter we will define what we mean by a learning 
rule, explain the perceptron network and learning rule, and discuss the 
limitations of the perceptron network.

 

Learning Rules

 

As we begin our discussion of the perceptron learning rule, we want to dis-
cuss learning rules in general. By 

 

learning rule

 

 we mean a procedure for 
modifying the weights and biases of a network. (This procedure may also 
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be referred to as a training algorithm.) The purpose of the learning rule is 
to train the network to perform some task. There are many types of neural 
network learning rules. They fall into three broad categories: supervised 
learning, unsupervised learning and reinforcement (or graded) learning. 

In 

 

supervised learning

 

, the learning rule is provided with a set of examples 
(the 

 

training set

 

) of proper network behavior:

, (4.1)

where  is an input to the network and  is the corresponding correct 
(

 

target

 

) output. As the inputs are applied to the network, the network out-
puts are compared to the targets. The learning rule is then used to adjust 
the weights and biases of the network in order to move the network outputs 
closer to the targets. The perceptron learning rule falls in this supervised 
learning category. We will also investigate supervised learning algorithms 
in Chapters 7Ð12.

 

Reinforcement learning

 

 is similar to supervised learning, except that, in-
stead of being provided with the correct output for each network input, the 
algorithm is only given a grade. The grade (or score) is a measure of the net-
work performance over some sequence of inputs. This type of learning is 
currently much less common than supervised learning. It appears to be 
most suited to control system applications (see [BaSu83], [WhSo92]).

In 

 

unsupervised learning

 

, the weights and biases are modified in response 
to network inputs only. There are no target outputs available. At first 
glance this might seem to be impractical. How can you train a network if 
you donÕt know what it is supposed to do? Most of these algorithms perform 
some kind of clustering operation. They learn to categorize the input pat-
terns into a finite number of classes. This is especially useful in such appli-
cations as vector quantization. We will see in Chapters 13Ð16 that there 
are a number of unsupervised learning algorithms.

 

Perceptron Architecture

 

Before we present the perceptron learning rule, letÕs expand our investiga-
tion of the perceptron network, which we began in Chapter 3. The general 
perceptron network is shown in Figure 4.1.

The output of the network is given by

. (4.2)

(Note that in Chapter 3 we used the  transfer function, instead of 

 

hardlim

 

. This does not affect the capabilities of the network. See Exercise 
E4.6.)

Supervised Learning
Training Set

p1 t 1{ , } p2 t 2{ , } … pQ tQ{ , }, , ,

pq tq
Target

Reinforcement Learning

Unsupervised Learning

a hardlim Wp b+( )=

hardlims
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Figure 4.1  Perceptron Network

It will be useful in our development of the perceptron learning rule to be 
able to conveniently reference individual elements of the network output. 
LetÕs see how this can be done. First, consider the network weight matrix:

. (4.3)

We will define a vector composed of the elements of the 

 

i

 

th row of :

. (4.4)

Now we can partition the weight matrix:

. (4.5)

This allows us to write the 

 

i

 

th element of the network output vector as

p a

1

n
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b

R x 1
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S x 1
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w1 1, w1 2, … w1 R,

w2 1, w2 2, … w2 R,

wS 1, wS 2, … wS R,

=
… … …
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=
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W
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= …
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. (4.6)

Recall that the  transfer function (shown at left) is defined as:

(4.7)

Therefore, if the inner product of the 

 

i

 

th row of the weight matrix with the 
input vector is greater than or equal to , the output will be 1, otherwise 
the output will be 0. 

 

Thus each neuron in the network divides the input 
space into two regions

 

. It is useful to investigate the boundaries between 
these regions. We will begin with the simple case of a single-neuron percep-
tron with two inputs.

 

Single-Neuron Perceptron

 

LetÕs consider a two-input perceptron with one neuron, as shown in Figure 
4.2. 

Figure 4.2  Two-Input/Single-Output Perceptron

The output of this network is determined by

(4.8)

The 

 

decision boundary

 

 is determined by the input vectors for which the net 
input  is zero:

. (4.9)

To make the example more concrete, letÕs assign the following values for 
the weights and bias:

ai hardlim ni( ) hardlim wT
i p bi+( )= =

hardlim

n = Wp + b

a = hardlim (n)

a hardlim n( ) 1 if n 0≥
0 otherwise.




= =

bi–

p1
an

Inputs

bp2 w1,2

w1,1

1
A
AΣ

A
A

a = hardlim (Wp + b)

Two-Input Neuron

a hardlim n( ) hardlim Wp b+( )= =

hardlim wT
1 p b+( ) hardlim w1 1, p1 w1 2, p2 b+ +( )= =

Decision Boundary
n

n wT
1 p b+ w1 1, p1 w1 2, p2 b+ + 0= = =
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, , . (4.10)

The decision boundary is then

. (4.11)

This defines a line in the input space. On one side of the line the network 
output will be 0; on the line and on the other side of the line the output will 
be 1. To draw the line, we can find the points where it intersects the  and 

 axes. To find the  intercept set :

. (4.12)

To find the  intercept, set :

. (4.13)

The resulting decision boundary is illustrated in Figure 4.3.

To find out which side of the boundary corresponds to an output of 1, we 
just need to test one point. For the input , the network output 
will be

. (4.14)

Therefore, the network output will be 1 for the region above and to the right 
of the decision boundary. This region is indicated by the shaded area in Fig-
ure 4.3.

Figure 4.3  Decision Boundary for Two-Input Perceptron

w1 1, 1= w1 2, 1= b 1–=

n wT
1 p b+ w1 1, p1 w1 2, p2 b+ + p1 p2 1–+ 0= = = =

p1
p2 p2 p1 0=

p2
b

w1 2,
----------– 1–

1
------– 1= = = if p1 0=

p1 p2 0=

p1
b

w1 1,
----------– 1–

1
------– 1= = = if p2 0=

p 2 0
T

=

a hardlim wT
1 p b+( ) hardlim 1 1

2

0
1–

 
 
 

1= = =

p1

p2

1wTp + b = 0

a = 1

a = 0

1

1

1w
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We can also find the decision boundary graphically. The first step is to note 
that the boundary is always orthogonal to , as illustrated in the adjacent 
figures. The boundary is defined by

. (4.15)

For all points on the boundary, the inner product of the input vector with 
the weight vector is the same. This implies that these input vectors will all 
have the same projection onto the weight vector, so they must lie on a line 
orthogonal to the weight vector. (These concepts will be covered in more de-
tail in Chapter 5.) In addition, any vector in the shaded region of Figure 4.3 
will have an inner product greater than , and vectors in the unshaded 
region will have inner products less than . Therefore the weight vector 

 will always point toward the region where the neuron output is 1. 

After we have selected a weight vector with the correct angular orientation, 
the bias value can be computed by selecting a point on the boundary and 
satisfying Eq. (4.15).

LetÕs apply some of these concepts to the design of a perceptron network to 
implement a simple logic function: the AND gate. The input/target pairs for 
the AND gate are

.

The figure to the left illustrates the problem graphically. It displays the in-
put space, with each input vector labeled according to its target. The dark 
circles  indicate that the target is 1, and the light circles  indicate that 
the target is 0.

The first step of the design is to select a decision boundary. We want to 
have a line that separates the dark circles and the light circles. There are 
an infinite number of solutions to this problem. It seems reasonable to 
choose the line that falls ÒhalfwayÓ between the two categories of inputs, as 
shown in the adjacent figure.

Next we want to choose a weight vector that is orthogonal to the decision 
boundary. The weight vector can be any length, so there are infinite possi-
bilities. One choice is 

, (4.16)

as displayed in the figure to the left.

1w w1

wT
1 p b+ 0=

1w

b–
b–
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2
2+

p1
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= t1 0=,

 
 
 

p2
0

1
= t2 0=,

 
 
 

p3
1

0
= t3 0=,

 
 
 

p4
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1
= t4 1=,

 
 
 

1w
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2
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Finally, we need to find the bias, . We can do this by picking a point on 
the decision boundary and satisfying Eq. (4.15). If we use  we 
find

. (4.17)

We can now test the network on one of the input/target pairs. If we apply 
 to the network, the output will be

(4.18)

which is equal to the target output . Verify for yourself that all inputs are 
correctly classified.

To experiment with decision boundaries, use the Neural Network Design 
Demonstration Decision Boundaries (nnd4db ).

Multiple-Neuron Perceptron
Note that for perceptrons with multiple neurons, as in Figure 4.1, there 
will be one decision boundary for each neuron. The decision boundary for 
neuron  will be defined by

. (4.19)

A single-neuron perceptron can classify input vectors into two categories, 
since its output can be either 0 or 1. A multiple-neuron perceptron can clas-
sify inputs into many categories. Each category is represented by a differ-
ent output vector. Since each element of the output vector can be either 0 
or 1, there are a total of  possible categories, where  is the number of 
neurons.

Perceptron Learning Rule
Now that we have examined the performance of perceptron networks, we 
are in a position to introduce the perceptron learning rule. This learning 
rule is an example of supervised training, in which the learning rule is pro-
vided with a set of examples of proper network behavior:

, (4.20)

b
p 1.5 0

T
=

wT
1 p b+ 2 2

1.5

0
b+ 3 b+ 0= = = b 3–=⇒

p2

a hardlim wT
1 p2 b+( ) hardlim 2 2

0

1
3–

 
 
 

= =

a hardlim 1–( ) 0,= =

t2

i

wT
i p bi+ 0=

2S S

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,
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where  is an input to the network and  is the corresponding target out-
put. As each input is applied to the network, the network output is com-
pared to the target. The learning rule then adjusts the weights and biases 
of the network in order to move the network output closer to the target. 

Test Problem
In our presentation of the perceptron learning rule we will begin with a 
simple test problem and will experiment with possible rules to develop 
some intuition about how the rule should work. The input/target pairs for 
our test problem are

.

The problem is displayed graphically in the adjacent figure, where the two 
input vectors whose target is 0 are represented with a light circle , and 
the vector whose target is 1 is represented with a dark circle . This is a 
very simple problem, and we could almost obtain a solution by inspection. 
This simplicity will help us gain some intuitive understanding of the basic 
concepts of the perceptron learning rule.

The network for this problem should have two-inputs and one output. To 
simplify our development of the learning rule, we will begin with a network 
without a bias. The network will then have just two parameters,  and 

, as shown in Figure 4.4.

Figure 4.4  Test Problem Network

By removing the bias we are left with a network whose decision boundary 
must pass through the origin. We need to be sure that this network is still 
able to solve the test problem. There must be an allowable decision bound-
ary that can separate the vectors  and  from the vector . The figure 
to the left illustrates that there are indeed an infinite number of such 
boundaries. 
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The adjacent figure shows the weight vectors that correspond to the allow-
able decision boundaries. (Recall that the weight vector is orthogonal to the 
decision boundary.) We would like a learning rule that will find a weight 
vector that points in one of these directions. Remember that the length of 
the weight vector does not matter; only its direction is important.

Constructing Learning Rules
Training begins by assigning some initial values for the network parame-
ters. In this case we are training a two-input/single-output network with-
out a bias, so we only have to initialize its two weights. Here we set the 
elements of the weight vector, , to the following randomly generated val-
ues:

. (4.21)

We will now begin presenting the input vectors to the network. We begin 
with :

(4.22)

The network has not returned the correct value. The network output is 0, 
while the target response, , is 1.

We can see what happened by looking at the adjacent diagram. The initial 
weight vector results in a decision boundary that incorrectly classifies the 
vector . We need to alter the weight vector so that it points more toward 

, so that in the future it has a better chance of classifying it correctly. 

One approach would be to set  equal to . This is simple and would en-
sure that  was classified properly in the future. Unfortunately, it is easy 
to construct a problem for which this rule cannot find a solution. The dia-
gram to the lower left shows a problem that cannot be solved with the 
weight vector pointing directly at either of the two class 1 vectors. If we ap-
ply the rule  every time one of these vectors is misclassified, the net-
workÕs weights will simply oscillate back and forth and will never find a 
solution.

Another possibility would be to add  to . Adding  to  would make 
 point more in the direction of . Repeated presentations of  would 

cause the direction of  to asymptotically approach the direction of . 
This rule can be stated:

. (4.23)
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a hardlim wT
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Applying this rule to our test problem results in new values for :

. (4.24)

This operation is illustrated in the adjacent figure.

We now move on to the next input vector and will continue making changes 
to the weights and cycling through the inputs until they are all classified 
correctly.

The next input vector is . When it is presented to the network we find:

(4.25)

The target  associated with  is 0 and the output a is 1. A class 0 vector 
was misclassified as a 1.

Since we would now like to move the weight vector  away from the input, 
we can simply change the addition in Eq. (4.23) to subtraction:

. (4.26)

If we apply this to the test problem we find:

, (4.27)

which is illustrated in the adjacent figure.

Now we present the third vector :

(4.28)

The current  results in a decision boundary that misclassifies . This 
is a situation for which we already have a rule, so  will be updated again, 
according to Eq. (4.26):

. (4.29)
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The diagram to the left shows that the perceptron has finally learned to 
classify the three vectors properly. If we present any of the input vectors to 
the neuron, it will output the correct class for that input vector.

This brings us to our third and final rule: if it works, donÕt fix it.

(4.30)

Here are the three rules, which cover all possible combinations of output 
and target values:

(4.31)

Unified Learning Rule
The three rules in Eq. (4.31) can be rewritten as a single expression. First 
we will define a new variable, the perceptron error e:

. (4.32)

We can now rewrite the three rules of Eq. (4.31) as:

(4.33)

Looking carefully at the first two rules in Eq. (4.33) we can see that the sign 
of  is the same as the sign on the error, e. Furthermore, the absence of  
in the third rule corresponds to an e of 0. Thus, we can unify the three rules 
into a single expression:

. (4.34)

This rule can be extended to train the bias by noting that a bias is simply 
a weight whose input is always 1. We can thus replace the input  in Eq. 
(4.34) with the input to the bias, which is 1. The result is the perceptron 
rule for a bias:

. (4.35)
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Training Multiple-Neuron Perceptrons
The perceptron rule, as given by Eq. (4.34) and Eq. (4.35), updates the 
weight vector of a single neuron perceptron. We can generalize this rule for 
the multiple-neuron perceptron of Figure 4.1 as follows. To update the ith 
row of the weight matrix use:

. (4.36)

To update the ith element of the bias vector use:

. (4.37)

The perceptron rule can be written conveniently in matrix notation:

, (4.38)

and

. (4.39)

To test the perceptron learning rule, consider again the apple/orange rec-
ognition problem of Chapter 3. The input/output prototype vectors will be

. (4.40)

(Note that we are using 0 as the target output for the orange pattern, , 
instead of - 1, as was used in Chapter 3. This is because we are using the 

 transfer function, instead of .)

Typically the weights and biases are initialized to small random numbers. 
Suppose that here we start with the initial weight matrix and bias:

, . (4.41)

The first step is to apply the first input vector, , to the network:

(4.42)
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Perceptron Rule
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Then we calculate the error:

. (4.43)

The weight update is

(4.44)

The bias update is

. (4.45)

This completes the first iteration.

The second iteration of the perceptron rule is:

(4.46)

(4.47)

(4.48)

(4.49)

The third iteration begins again with the first input vector:

(4.50)

(4.51)

(4.52)
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. (4.53)

If you continue with the iterations you will find that both input vectors will 
now be correctly classified. The algorithm has converged to a solution. Note 
that the final decision boundary is not the same as the one we developed in 
Chapter 3, although both boundaries correctly classify the two input vec-
tors. 

To experiment with the perceptron learning rule, use the Neural Network 
Design Demonstration Perceptron Rule (nnd4pr ).

Proof of Convergence
Although the perceptron learning rule is simple, it is quite powerful. In 
fact, it can be shown that the rule will always converge to weights that ac-
complish the desired classification (assuming that such weights exist). In 
this section we will present a proof of convergence for the perceptron learn-
ing rule for the single-neuron perceptron shown in Figure 4.5. 

Figure 4.5  Single-Neuron Perceptron

The output of this perceptron is obtained from

. (4.54)

The network is provided with the following examples of proper network be-
havior:

. (4.55)

where each target output, , is either  or .

Notation
To conveniently present the proof we will first introduce some new nota-
tion. We will combine the weight matrix and the bias into a single vector:
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. (4.56)

We will also augment the input vectors with a 1, corresponding to the bias 
input:

. (4.57)

Now we can express the net input to the neuron as follows:

. (4.58)

The perceptron learning rule for a single-neuron perceptron (Eq. (4.34) and 
Eq. (4.35)) can now be written

. (4.59)

The error  can be either ,  or . If , then no change is made to 
the weights. If , then the input vector is added to the weight vector. 
If , then the negative of the input vector is added to the weight vec-
tor. If we count only those iterations for which the weight vector is changed, 
the learning rule becomes

, (4.60)

where  is the appropriate member of the set

. (4.61)

We will assume that a weight vector exists that can correctly categorize all 
 input vectors. This solution will be denoted . For this weight vector 

we will assume that

 if , (4.62)

and

 if . (4.63)

Proof
We are now ready to begin the proof of the perceptron convergence theo-
rem. The objective of the proof is to find upper and lower bounds on the 
length of the weight vector at each stage of the algorithm.
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Assume that the algorithm is initialized with the zero weight vector: 
. (This does not affect the generality of our argument.) Then, af-

ter  iterations (changes to the weight vector), we find from Eq. (4.60):

. (4.64)

If we take the inner product of the solution weight vector with the weight 
vector at iteration  we obtain

. (4.65)

From Eq. (4.61)ÐEq. (4.63) we can show that

. (4.66)

Therefore

. (4.67)

From the Cauchy-Schwartz inequality (see [Brog91])

, (4.68)

where

. (4.69)

If we combine Eq. (4.67) and Eq. (4.68) we can put a lower bound on the 
squared length of the weight vector at iteration :

. (4.70)

Next we want to find an upper bound for the length of the weight vector. 
We begin by finding the change in the length at iteration :

(4.71)

Note that 
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, (4.72)

since the weights would not be updated unless the previous input vector 
had been misclassified. Now Eq. (4.71) can be simplified to

. (4.73)

We can repeat this process for , , etc., to obtain

. (4.74)

If , this upper bound can be simplified to

. (4.75)

We now have an upper bound (Eq. (4.75)) and a lower bound (Eq. (4.70)) on 
the squared length of the weight vector at iteration . If we combine the 
two inequalities we find

 or . (4.76)

Because  has an upper bound, this means that the weights will only be 
changed a finite number of times. Therefore, the perceptron learning rule 
will converge in a finite number of iterations. 

The maximum number of iterations (changes to the weight vector) is in-
versely related to the square of . This parameter is a measure of how close 
the solution decision boundary is to the input patterns. This means that if 
the input classes are difficult to separate (are close to the decision bound-
ary) it will take many iterations for the algorithm to converge.

Note that there are only three key assumptions required for the proof:

1. A solution to the problem exists, so that Eq. (4.66) is satisfied. 

2. The weights are only updated when the input vector is misclassified, 
therefore Eq. (4.72) is satisfied. 

3. An upper bound, , exists for the length of the input vectors. 

Because of the generality of the proof, there are many variations of the per-
ceptron learning rule that can also be shown to converge. (See Exercise 
E4.9.)

Limitations
The perceptron learning rule is guaranteed to converge to a solution in a 
finite number of steps, so long as a solution exists. This brings us to an im-
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portant question. What problems can a perceptron solve? Recall that a sin-
gle-neuron perceptron is able to divide the input space into two regions. 
The boundary between the regions is defined by the equation

. (4.77)

This is a linear boundary (hyperplane). The perceptron can be used to clas-
sify input vectors that can be separated by a linear boundary. We call such 
vectors linearly separable. The logical AND gate example on page 4-7 illus-
trates a two-dimensional example of a linearly separable problem. The ap-
ple/orange recognition problem of Chapter 3 was a three-dimensional 
example.

Unfortunately, many problems are not linearly separable. The classic ex-
ample is the XOR gate. The input/target pairs for the XOR gate are

.

This problem is illustrated graphically on the left side of Figure 4.6, which 
also shows two other linearly inseparable problems. Try drawing a straight 
line between the vectors with targets of 1 and those with targets of 0 in any 
of the diagrams of Figure 4.6.

Figure 4.6  Linearly Inseparable Problems

It was the inability of the basic perceptron to solve such simple problems 
that led, in part, to a reduction in interest in neural network research dur-
ing the 1970s. Rosenblatt had investigated more complex networks, which 
he felt would overcome the limitations of the basic perceptron, but he was 
never able to effectively extend the perceptron rule to such networks. In 
Chapter 11 we will introduce multilayer perceptrons, which can solve arbi-
trary classification problems, and will describe the backpropagation algo-
rithm, which can be used to train them.
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Summary of Results

Perceptron Architecture

            

Decision Boundary

.

The decision boundary is always orthogonal to the weight vector.

Single-layer perceptrons can only classify linearly separable vectors.

Perceptron Learning Rule
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Solved Problems

P4.1 Solve the three simple classification problems shown in Figure 
P4.1 by drawing a decision boundary. Find weight and bias values 
that result in single-neuron perceptrons with the chosen decision 
boundaries.

Figure P4.1   Simple Classification Problems

First we draw a line between each set of dark and light data points.

The next step is to find the weights and biases. The weight vectors must be 
orthogonal to the decision boundaries, and pointing in the direction of 
points to be classified as 1 (the dark points). The weight vectors can have 
any length we like.

Here is one set of choices for the weight vectors:

(a) ,   (b) ,   (c) .

(a) (b) (c)

(a) (b) (c)

1w
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Now we find the bias values for each perceptron by picking a point on the 
decision boundary and satisfying Eq. (4.15).

This gives us the following three biases:

(a) , (b) , (c) 

We can now check our solution against the original points. Here we test the 
first network on the input vector .

We can use MATLAB to automate the testing process and to try new 
points. Here the first network is used to classify a point that was not in the 
original problem.

w=[-2 1]; b = 0;

a = hardlim(w*[1;1]+b)
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P4.2 Convert the classification problem defined below into an equiva-
lent problem definition consisting of inequalities constraining 
weight and bias values.

Each target  indicates whether or not the net input in response to  must 
be less than 0, or greater than or equal to 0. For example, since  is 1, we 
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know that the net input corresponding to  must be greater than or equal 
to 0. Thus we get the following inequality:

Applying the same procedure to the input/target pairs for ,  
and  results in the following set of inequalities.

Solving a set of inequalities is more difficult than solving a set of equalities. 
One added complexity is that there are often an infinite number of solu-
tions (just as there are often an infinite number of linear decision bound-
aries that can solve a linearly separable classification problem).

However, because of the simplicity of this problem, we can solve it by 
graphing the solution spaces defined by the inequalities. Note that  
only appears in inequalities (ii) and (iv), and  only appears in inequal-
ities (i) and (iii). We can plot each pair of inequalities with two graphs.

Any weight and bias values that fall in both dark gray regions will solve 
the classification problem.

Here is one such solution:

.
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P4.3 We have a classification problem with four classes of input vector. 
The four classes are

class 1: , class 2: ,

class 3: , class 4: .

Design a perceptron network to solve this problem.

To solve a problem with four classes of input vector we will need a percep-
tron with at least two neurons, since an -neuron perceptron can categorize 

 classes. The two-neuron perceptron is shown in Figure P4.2.

Figure P4.2  Two-Neuron Perceptron

LetÕs begin by displaying the input vectors, as in Figure P4.3. The light cir-
cles  indicate class 1 vectors, the light squares  indicate class 2 vectors, 
the dark circles  indicate class 3 vectors, and the dark squares  indicate 
class 4 vectors.

A two-neuron perceptron creates two decision boundaries. Therefore, to di-
vide the input space into the four categories, we need to have one decision 
boundary divide the four classes into two sets of two. The remaining bound-
ary must then isolate each class. Two such boundaries are illustrated in 
Figure P4.4. We now know that our patterns are linearly separable.
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4Figure P4.3  Input Vectors for Problem P4.3

Figure P4.4  Tentative Decision Boundaries for Problem P4.3

The weight vectors should be orthogonal to the decision boundaries and 
should point toward the regions where the neuron outputs are 1. The next 
step is to decide which side of each boundary should produce a 1. One choice 
is illustrated in Figure P4.5, where the shaded areas represent outputs of 
1. The darkest shading indicates that both neuron outputs are 1. Note that 
this solution corresponds to target values of

class 1: , class 2: ,

class 3: , class 4: .

We can now select the weight vectors:
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 and .

Note that the lengths of the weight vectors is not important, only their di-
rections. They must be orthogonal to the decision boundaries. Now we can 
calculate the bias by picking a point on a boundary and satisfying Eq. 
(4.15):

,

.

Figure P4.5  Decision Regions for Problem P4.3

In matrix form we have

 and ,

which completes our design.

P4.4 Solve the following classification problem with the perceptron 
rule. Apply each input vector in order, for as many repetitions as 
it takes to ensure that the problem is solved. Draw a graph of the 
problem only after you have found a solution.
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Use the initial weights and bias:

.

We start by calculating the perceptronÕs output  for the first input vector 
, using the initial weights and bias.

The output  does not equal the target value , so we use the perceptron 
rule to find new weights and biases based on the error.

We now apply the second input vector , using the updated weights and 
bias.

This time the output  is equal to the target . Application of the percep-
tron rule will not result in any changes.

We now apply the third input vector.
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The output in response to input vector  is equal to the target , so there 
will be no changes.

We now move on to the last input vector .

This time the output  does not equal the appropriate target . The per-
ceptron rule will result in a new set of values for  and .

We now must check the first vector  again. This time the output  is 
equal to the associated target .

Therefore there are no changes.

The second presentation of  results in an error and therefore a new set 
of weight and bias values.
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Here are those new values:

Cycling through each input vector once more results in no errors.

Therefore the algorithm has converged. The final solution is:

.

Now we can graph the training data and the decision boundary of the solu-
tion. The decision boundary is given by

.

To find the  intercept of the decision boundary, set :

.

To find the  intercept, set :
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The resulting decision boundary is illustrated in Figure P4.6.

Figure P4.6  Decision Boundary for Problem P4.4

Note that the decision boundary falls across one of the training vectors. 
This is acceptable, given the problem definition, since the hard limit func-
tion returns 1 when given an input of 0, and the target for the vector in 
question is indeed 1.

P4.5 Consider again the four-class decision problem that we introduced 
in Problem P4.3. Train a perceptron network to solve this problem 
using the perceptron learning rule.

If we use the same target vectors that we introduced in Problem P4.3, the 
training set will be:
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,

,

.

The second iteration is

,

,

,

.

The third iteration is
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.

Iterations four through eight produce no changes in the weights.

The ninth iteration produces

,

,

,

.

At this point the algorithm has converged, since all input patterns will be 
correctly classified. The final decision boundaries are displayed in Figure 
P4.7. Compare this result with the network we designed in Problem P4.3.

Figure P4.7  Final Decision Boundaries for Problem P4.5
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Epilogue

In this chapter we have introduced our first learning rule Ñ the perceptron 
learning rule. It is a type of learning called supervised learning, in which 
the learning rule is provided with a set of examples of proper network be-
havior. As each input is applied to the network, the learning rule adjusts 
the network parameters so that the network output will move closer to the 
target.

The perceptron learning rule is very simple, but it is also quite powerful. 
We have shown that the rule will always converge to a correct solution, if 
such a solution exists. The weakness of the perceptron network lies not 
with the learning rule, but with the structure of the network. The standard 
perceptron is only able to classify vectors that are linearly separable. We 
will see in Chapter 11 that the perceptron architecture can be generalized 
to mutlilayer perceptrons, which can solve arbitrary classification prob-
lems. The backpropagation learning rule, which is introduced in Chapter 
11, can be used to train these networks.

In Chapters 3 and 4 we have used many concepts from the field of linear 
algebra, such as inner product, projection, distance (norm), etc. We will 
find in later chapters that a good foundation in linear algebra is essential 
to our understanding of all neural networks. In Chapters 5 and 6 we will 
review some of the key concepts from linear algebra that will be most im-
portant in our study of neural networks. Our objective will be to obtain a 
fundamental understanding of how neural networks work.
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ed both to explain the perceptronÕs limitations and to indi-
cate directions for overcoming them. Unfortunately, the 
book pessimistically predicted that the limitations of per-
ceptrons indicated that the field of neural networks was a 
dead end. Although this was not true, it temporarily cooled 
research and funding for research for several years.

[Rose58] F. Rosenblatt, ÒThe perceptron: A probabilistic model for 
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logical Review, Vol. 65, pp. 386Ð408, 1958.

This paper presents the first practical artificial neural net-
work Ñ the perceptron.
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[Rose61] F. Rosenblatt, Principles of Neurodynamics, Washington 
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One of the first books on neurocomputing.
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cations of neural networks and fuzzy logic to control sys-
tems.
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Exercises

E4.1 Consider the classification problem defined below:

.

i. Draw a diagram of the single-neuron perceptron you would use to 
solve this problem. How many inputs are required?

ii. Draw a graph of the data points, labeled according to their targets. 
Is this problem solvable with the network you defined in part (i)? 
Why or why not?

E4.2 Consider the classification problem defined below.

.

i. Design a single-neuron perceptron to solve this problem. Design the 
network graphically, by choosing weight vectors that are orthogonal 
to the decision boundaries.

ii. Test your solution with all four input vectors.

iii. Classify the following input vectors with your solution. You can ei-
ther perform the calculations manually or with MATLAB. 

iv. Which of the vectors in part (iii) will always be classified the same 
way, regardless of the solution values for  and ? Which may 
vary depending on the solution? Why?

E4.3 Solve the classification problem in Exercise E4.2 by solving inequalities (as 
in Problem P4.2), and repeat parts (ii) and (iii) with the new solution. (The 
solution is more difficult than Problem P4.2, since you canÕt isolate the 
weights and biases in a pairwise manner.)

p1
1–

1
= t1 1=,

 
 
 

p2
0

0
= t2 1=,

 
 
 

p3
1

1–
= t3 1=,

 
 
 

p4
1

0
= t4 0=,

 
 
 

p5
0

1
= t5 0=,

 
 
 

p1
1–

1
= t1 1=,

 
 
 

p2
1–

1–
= t2 1=,

 
 
 

p3
0

0
= t3 0=,

 
 
 

p4
1

0
= t4 0=,

 
 
 

» 2 + 2

ans =
      4

p5
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0
= p6

1

1
= p7

0

1
= p8

1–

2–
=

W b
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E4.4 Solve the classification problem in Exercise E4.2 by applying the percep-
tron rule to the following initial parameters, and repeat parts (ii) and (iii) 
with the new solution.

E4.5 Prove mathematically (not graphically) that the following problem is un-
solvable for a two-input/single-neuron perceptron.

(Hint: start by rewriting the input/target requirements as inequali-
ties that constrain the weight and bias values.)

E4.6 The symmetric hard limit function is sometimes used in perceptron net-
works, instead of the hard limit function. Target values are then taken 
from the set [- 1, 1] instead of [0, 1].

i. Write a simple expression that maps numbers in the ordered set [0, 
1] into the ordered set [- 1, 1]. Write the expression that performs 
the inverse mapping.

ii. Consider two single-neuron perceptrons with the same weight and 
bias values. The first network uses the hard limit function ([0, 1] 
values), and the second network uses the symmetric hard limit 
function. If the two networks are given the same input , and up-
dated with the perceptron learning rule, will their weights continue 
to have the same value?

iii. If the changes to the weights of the two neurons are different, how 
do they differ? Why?

iv. Given initial weight and bias values for a standard hard limit per-
ceptron, create a method for initializing a symmetric hard limit per-
ceptron so that the two neurons will always respond identically 
when trained on identical data.

E4.7 The vectors in the ordered set defined below were obtained by measuring 
the weight and ear lengths of toy rabbits and bears in the Fuzzy Wuzzy An-
imal Factory. The target values indicate whether the respective input vec-
tor was taken from a rabbit (0) or a bear (1). The first element of the input 
vector is the weight of the toy, and the second element is the ear length.

W 0( ) 0 0= b 0( ) 0=
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n = Wp + b
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p

» 2 + 2
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i. Use MATLAB to initialize and train a network to solve this Òpracti-
calÓ problem.

ii. Use MATLAB to test the resulting weight and bias values against 
the input vectors.

iii. Alter the input vectors to ensure that the decision boundary of any 
solution will not intersect one of the original input vectors (i.e., to 
ensure only robust solutions are found). Then retrain the network.

E4.8 Consider again the four-category classification problem described in Prob-
lems P4.3 and P4.5. Suppose that we change the input vector  to

.

i. Is the problem still linearly separable? Demonstrate your answer 
graphically.

ii. Use MATLAB and to initialize and train a network to solve this 
problem. Explain your results.

iii. If  is changed to

is the problem linearly separable?

iv. With the  from (iii), use MATLAB to initialize and train a net-
work to solve this problem. Explain your results.

E4.9 One variation of the perceptron learning rule is

where  is called the learning rate. Prove convergence of this algorithm. 
Does the proof require a limit on the learning rate? Explain.
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