

Objectives

4-1

4

4

Perceptron Learning Rule

Objectives 4-1

Theory and Examples 4-2

Learning Rules 4-2

Perceptron Architecture 4-3

Single-Neuron Perceptron 4-5

Multiple-Neuron Perceptron 4-8

Perceptron Learning Rule 4-8

Test Problem 4-9

Constructing Learning Rules 4-10

Unified Learning Rule 4-12

Training Multiple-Neuron Perceptrons 4-13

Proof of Convergence 4-15

Notation 4-15

Proof 4-16

Limitations 4-18

Summary of Results 4-20

Solved Problems 4-21

Epilogue 4-33

Further Reading 4-34

Exercises 4-36

Objectives

One of the questions we raised in Chapter 3 was: ÒHow do we determine the
weight matrix and bias for perceptron networks with many inputs, where
it is impossible to visualize the decision boundaries?Ó In this chapter we
will describe an algorithm for

training

 perceptron networks, so that they
can

learn

 to solve classification problems. We will begin by explaining what
a learning rule is and will then develop the perceptron learning rule. We
will conclude by discussing the advantages and limitations of the single-
layer perceptron network. This discussion will lead us into future chapters.

4

 Perceptron Learning Rule

4-2

Theory and Examples

In 1943, Warren McCulloch and Walter Pitts introduced one of the first ar-
tificial neurons [McPi43]. The main feature of their neuron model is that a
weighted sum of input signals is compared to a threshold to determine the
neuron output. When the sum is greater than or equal to the threshold, the
output is 1. When the sum is less than the threshold, the output is 0. They
went on to show that networks of these neurons could, in principle, com-
pute any arithmetic or logical function. Unlike biological networks, the pa-
rameters of their networks had to be designed, as no training method was
available. However, the perceived connection between biology and digital
computers generated a great deal of interest.

In the late 1950s, Frank Rosenblatt and several other researchers devel-
oped a class of neural networks called perceptrons. The neurons in these
networks were similar to those of McCulloch and Pitts. RosenblattÕs key
contribution was the introduction of a learning rule for training perceptron
networks to solve pattern recognition problems [Rose58]. He proved that
his learning rule will always converge to the correct network weights, if
weights exist that solve the problem. Learning was simple and automatic.
Examples of proper behavior were presented to the network, which learned
from its mistakes. The perceptron could even learn when initialized with
random values for its weights and biases.

Unfortunately, the perceptron network is inherently limited. These limita-
tions were widely publicized in the book

Perceptrons

 [MiPa69] by Marvin
Minsky and Seymour Papert. They demonstrated that the perceptron net-
works were incapable of implementing certain elementary functions. It
was not until the 1980s that these limitations were overcome with im-
proved (multilayer) perceptron networks and associated learning rules. We
will discuss these improvements in Chapters 11 and 12.

Today the perceptron is still viewed as an important network. It remains a
fast and reliable network for the class of problems that it can solve. In ad-
dition, an understanding of the operations of the perceptron provides a
good basis for understanding more complex networks. Thus, the perceptron
network, and its associated learning rule, are well worth discussion here.

In the remainder of this chapter we will define what we mean by a learning
rule, explain the perceptron network and learning rule, and discuss the
limitations of the perceptron network.

Learning Rules

As we begin our discussion of the perceptron learning rule, we want to dis-
cuss learning rules in general. By

learning rule

 we mean a procedure for
modifying the weights and biases of a network. (This procedure may also

Learning Rule

Perceptron Architecture

4-3

4

be referred to as a training algorithm.) The purpose of the learning rule is
to train the network to perform some task. There are many types of neural
network learning rules. They fall into three broad categories: supervised
learning, unsupervised learning and reinforcement (or graded) learning.

In

supervised learning

, the learning rule is provided with a set of examples
(the

training set

) of proper network behavior:

, (4.1)

where is an input to the network and is the corresponding correct
(

target

) output. As the inputs are applied to the network, the network out-
puts are compared to the targets. The learning rule is then used to adjust
the weights and biases of the network in order to move the network outputs
closer to the targets. The perceptron learning rule falls in this supervised
learning category. We will also investigate supervised learning algorithms
in Chapters 7Ð12.

Reinforcement learning

 is similar to supervised learning, except that, in-
stead of being provided with the correct output for each network input, the
algorithm is only given a grade. The grade (or score) is a measure of the net-
work performance over some sequence of inputs. This type of learning is
currently much less common than supervised learning. It appears to be
most suited to control system applications (see [BaSu83], [WhSo92]).

In

unsupervised learning

, the weights and biases are modified in response
to network inputs only. There are no target outputs available. At first
glance this might seem to be impractical. How can you train a network if
you donÕt know what it is supposed to do? Most of these algorithms perform
some kind of clustering operation. They learn to categorize the input pat-
terns into a finite number of classes. This is especially useful in such appli-
cations as vector quantization. We will see in Chapters 13Ð16 that there
are a number of unsupervised learning algorithms.

Perceptron Architecture

Before we present the perceptron learning rule, letÕs expand our investiga-
tion of the perceptron network, which we began in Chapter 3. The general
perceptron network is shown in Figure 4.1.

The output of the network is given by

. (4.2)

(Note that in Chapter 3 we used the transfer function, instead of

hardlim

. This does not affect the capabilities of the network. See Exercise
E4.6.)

Supervised Learning
Training Set

p1 t 1{ , } p2 t 2{ , } … pQ tQ{ , }, , ,

pq tq
Target

Reinforcement Learning

Unsupervised Learning

a hardlim Wp b+()=

hardlims

4

 Perceptron Learning Rule

4-4

Figure 4.1 Perceptron Network

It will be useful in our development of the perceptron learning rule to be
able to conveniently reference individual elements of the network output.
LetÕs see how this can be done. First, consider the network weight matrix:

. (4.3)

We will define a vector composed of the elements of the

i

th row of :

. (4.4)

Now we can partition the weight matrix:

. (4.5)

This allows us to write the

i

th element of the network output vector as

p a

1

n

AA
AAW

AA
AA

b

R x 1
S x R

S x 1

S x 1

S x 1

Input

R SAA
AA
AA

a = hardlim (Wp + b)

Hard Limit Layer

W

w1 1, w1 2, … w1 R,

w2 1, w2 2, … w2 R,

wS 1, wS 2, … wS R,

=
… … …

W

wi

wi 1,

wi 2,

wi R,

=

…

W

wT
1

wT
2

wT
S

= …

Perceptron Architecture

4-5

4

. (4.6)

Recall that the transfer function (shown at left) is defined as:

(4.7)

Therefore, if the inner product of the

i

th row of the weight matrix with the
input vector is greater than or equal to , the output will be 1, otherwise
the output will be 0.

Thus each neuron in the network divides the input
space into two regions

. It is useful to investigate the boundaries between
these regions. We will begin with the simple case of a single-neuron percep-
tron with two inputs.

Single-Neuron Perceptron

LetÕs consider a two-input perceptron with one neuron, as shown in Figure
4.2.

Figure 4.2 Two-Input/Single-Output Perceptron

The output of this network is determined by

(4.8)

The

decision boundary

 is determined by the input vectors for which the net
input is zero:

. (4.9)

To make the example more concrete, letÕs assign the following values for
the weights and bias:

ai hardlim ni() hardlim wT
i p bi+()= =

hardlim

n = Wp + b

a = hardlim (n)

a hardlim n() 1 if n 0≥
0 otherwise.




= =

bi–

p1
an

Inputs

bp2 w1,2

w1,1

1
A
AΣ

A
A

a = hardlim (Wp + b)

Two-Input Neuron

a hardlim n() hardlim Wp b+()= =

hardlim wT
1 p b+() hardlim w1 1, p1 w1 2, p2 b+ +()= =

Decision Boundary
n

n wT
1 p b+ w1 1, p1 w1 2, p2 b+ + 0= = =

4 Perceptron Learning Rule

4-6

, , . (4.10)

The decision boundary is then

. (4.11)

This defines a line in the input space. On one side of the line the network
output will be 0; on the line and on the other side of the line the output will
be 1. To draw the line, we can find the points where it intersects the and

 axes. To find the intercept set :

. (4.12)

To find the intercept, set :

. (4.13)

The resulting decision boundary is illustrated in Figure 4.3.

To find out which side of the boundary corresponds to an output of 1, we
just need to test one point. For the input , the network output
will be

. (4.14)

Therefore, the network output will be 1 for the region above and to the right
of the decision boundary. This region is indicated by the shaded area in Fig-
ure 4.3.

Figure 4.3 Decision Boundary for Two-Input Perceptron

w1 1, 1= w1 2, 1= b 1–=

n wT
1 p b+ w1 1, p1 w1 2, p2 b+ + p1 p2 1–+ 0= = = =

p1
p2 p2 p1 0=

p2
b

w1 2,
----------– 1–

1
------– 1= = = if p1 0=

p1 p2 0=

p1
b

w1 1,
----------– 1–

1
------– 1= = = if p2 0=

p 2 0
T

=

a hardlim wT
1 p b+() hardlim 1 1

2

0
1–

 
 
 

1= = =

p1

p2

1wTp + b = 0

a = 1

a = 0

1

1

1w

Perceptron Architecture

4-7

4

We can also find the decision boundary graphically. The first step is to note
that the boundary is always orthogonal to , as illustrated in the adjacent
figures. The boundary is defined by

. (4.15)

For all points on the boundary, the inner product of the input vector with
the weight vector is the same. This implies that these input vectors will all
have the same projection onto the weight vector, so they must lie on a line
orthogonal to the weight vector. (These concepts will be covered in more de-
tail in Chapter 5.) In addition, any vector in the shaded region of Figure 4.3
will have an inner product greater than , and vectors in the unshaded
region will have inner products less than . Therefore the weight vector

 will always point toward the region where the neuron output is 1.

After we have selected a weight vector with the correct angular orientation,
the bias value can be computed by selecting a point on the boundary and
satisfying Eq. (4.15).

LetÕs apply some of these concepts to the design of a perceptron network to
implement a simple logic function: the AND gate. The input/target pairs for
the AND gate are

.

The figure to the left illustrates the problem graphically. It displays the in-
put space, with each input vector labeled according to its target. The dark
circles indicate that the target is 1, and the light circles indicate that
the target is 0.

The first step of the design is to select a decision boundary. We want to
have a line that separates the dark circles and the light circles. There are
an infinite number of solutions to this problem. It seems reasonable to
choose the line that falls ÒhalfwayÓ between the two categories of inputs, as
shown in the adjacent figure.

Next we want to choose a weight vector that is orthogonal to the decision
boundary. The weight vector can be any length, so there are infinite possi-
bilities. One choice is

, (4.16)

as displayed in the figure to the left.

1w w1

wT
1 p b+ 0=

1w

b–
b–

w1

2
2+

p1
0

0
= t1 0=,

 
 
 

p2
0

1
= t2 0=,

 
 
 

p3
1

0
= t3 0=,

 
 
 

p4
1

1
= t4 1=,

 
 
 

1w

AND
w1

2

2
=

4 Perceptron Learning Rule

4-8

Finally, we need to find the bias, . We can do this by picking a point on
the decision boundary and satisfying Eq. (4.15). If we use we
find

. (4.17)

We can now test the network on one of the input/target pairs. If we apply
 to the network, the output will be

(4.18)

which is equal to the target output . Verify for yourself that all inputs are
correctly classified.

To experiment with decision boundaries, use the Neural Network Design
Demonstration Decision Boundaries (nnd4db).

Multiple-Neuron Perceptron
Note that for perceptrons with multiple neurons, as in Figure 4.1, there
will be one decision boundary for each neuron. The decision boundary for
neuron will be defined by

. (4.19)

A single-neuron perceptron can classify input vectors into two categories,
since its output can be either 0 or 1. A multiple-neuron perceptron can clas-
sify inputs into many categories. Each category is represented by a differ-
ent output vector. Since each element of the output vector can be either 0
or 1, there are a total of possible categories, where is the number of
neurons.

Perceptron Learning Rule
Now that we have examined the performance of perceptron networks, we
are in a position to introduce the perceptron learning rule. This learning
rule is an example of supervised training, in which the learning rule is pro-
vided with a set of examples of proper network behavior:

, (4.20)

b
p 1.5 0

T
=

wT
1 p b+ 2 2

1.5

0
b+ 3 b+ 0= = = b 3–=⇒

p2

a hardlim wT
1 p2 b+() hardlim 2 2

0

1
3–

 
 
 

= =

a hardlim 1–() 0,= =

t2

i

wT
i p bi+ 0=

2S S

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

Perceptron Learning Rule

4-9

4

where is an input to the network and is the corresponding target out-
put. As each input is applied to the network, the network output is com-
pared to the target. The learning rule then adjusts the weights and biases
of the network in order to move the network output closer to the target.

Test Problem
In our presentation of the perceptron learning rule we will begin with a
simple test problem and will experiment with possible rules to develop
some intuition about how the rule should work. The input/target pairs for
our test problem are

.

The problem is displayed graphically in the adjacent figure, where the two
input vectors whose target is 0 are represented with a light circle , and
the vector whose target is 1 is represented with a dark circle . This is a
very simple problem, and we could almost obtain a solution by inspection.
This simplicity will help us gain some intuitive understanding of the basic
concepts of the perceptron learning rule.

The network for this problem should have two-inputs and one output. To
simplify our development of the learning rule, we will begin with a network
without a bias. The network will then have just two parameters, and

, as shown in Figure 4.4.

Figure 4.4 Test Problem Network

By removing the bias we are left with a network whose decision boundary
must pass through the origin. We need to be sure that this network is still
able to solve the test problem. There must be an allowable decision bound-
ary that can separate the vectors and from the vector . The figure
to the left illustrates that there are indeed an infinite number of such
boundaries.

pq tq

p1
1

2
= t1 1=,

 
 
 

p2
1–

2
= t2 0=,

 
 
 

p3
0

1–
= t3 0=,

 
 
 

1

3

2

w1 1,
w1 2,

p1
an

Inputs

p2 w1,2

w1,1

A
AΣ

A
A

a = hardlim(Wp)

No-Bias Neuron

AA
AA
AA
AA

1

3

2

p2 p3 p1

4 Perceptron Learning Rule

4-10

The adjacent figure shows the weight vectors that correspond to the allow-
able decision boundaries. (Recall that the weight vector is orthogonal to the
decision boundary.) We would like a learning rule that will find a weight
vector that points in one of these directions. Remember that the length of
the weight vector does not matter; only its direction is important.

Constructing Learning Rules
Training begins by assigning some initial values for the network parame-
ters. In this case we are training a two-input/single-output network with-
out a bias, so we only have to initialize its two weights. Here we set the
elements of the weight vector, , to the following randomly generated val-
ues:

. (4.21)

We will now begin presenting the input vectors to the network. We begin
with :

(4.22)

The network has not returned the correct value. The network output is 0,
while the target response, , is 1.

We can see what happened by looking at the adjacent diagram. The initial
weight vector results in a decision boundary that incorrectly classifies the
vector . We need to alter the weight vector so that it points more toward

, so that in the future it has a better chance of classifying it correctly.

One approach would be to set equal to . This is simple and would en-
sure that was classified properly in the future. Unfortunately, it is easy
to construct a problem for which this rule cannot find a solution. The dia-
gram to the lower left shows a problem that cannot be solved with the
weight vector pointing directly at either of the two class 1 vectors. If we ap-
ply the rule every time one of these vectors is misclassified, the net-
workÕs weights will simply oscillate back and forth and will never find a
solution.

Another possibility would be to add to . Adding to would make
 point more in the direction of . Repeated presentations of would

cause the direction of to asymptotically approach the direction of .
This rule can be stated:

. (4.23)

AA
AA
AA
AA

1

3

2

w1

wT
1 1.0 0.8–=

p1

a hardlim wT
1 p1() hardlim 1.0 0.8–

1

2 
 
 

= =

a hardlim 0.6–() 0 .= =

t1

1w

1

3

2

p1
p1

w1 p1
p1

w1 p=

p1 w1 p1 w1
w1 p1 p1

w1 p1

If t 1 and a 0, then w1
new w1

old p+== =

Perceptron Learning Rule

4-11

4

Applying this rule to our test problem results in new values for :

. (4.24)

This operation is illustrated in the adjacent figure.

We now move on to the next input vector and will continue making changes
to the weights and cycling through the inputs until they are all classified
correctly.

The next input vector is . When it is presented to the network we find:

(4.25)

The target associated with is 0 and the output a is 1. A class 0 vector
was misclassified as a 1.

Since we would now like to move the weight vector away from the input,
we can simply change the addition in Eq. (4.23) to subtraction:

. (4.26)

If we apply this to the test problem we find:

, (4.27)

which is illustrated in the adjacent figure.

Now we present the third vector :

(4.28)

The current results in a decision boundary that misclassifies . This
is a situation for which we already have a rule, so will be updated again,
according to Eq. (4.26):

. (4.29)

w1

w1
new w1

old p1+ 1.0

0.8–

1

2
+ 2.0

1.2
= = =

1w
1

3

2

p2

a hardlim wT
1 p2() hardlim 2.0 1.2

1–

2 
 
 

= =

hardlim 0.4() 1 .= =

t2 p2

w1

If t 0 and a 1, then w1
new w1

old p–== =

w1
new w1

old p2– 2.0

1.2

1–

2
– 3.0

0.8–
= = =

1w

1

3

2

p3

a hardlim wT
1 p3() hardlim 3.0 0.8–

0

1– 
 
 

= =

hardlim 0.8() 1 .= =

w1 p3
w1

w1
new w1

old p3– 3.0

0.8–

0

1–
– 3.0

0.2
= = =

4 Perceptron Learning Rule

4-12

The diagram to the left shows that the perceptron has finally learned to
classify the three vectors properly. If we present any of the input vectors to
the neuron, it will output the correct class for that input vector.

This brings us to our third and final rule: if it works, donÕt fix it.

(4.30)

Here are the three rules, which cover all possible combinations of output
and target values:

(4.31)

Unified Learning Rule
The three rules in Eq. (4.31) can be rewritten as a single expression. First
we will define a new variable, the perceptron error e:

. (4.32)

We can now rewrite the three rules of Eq. (4.31) as:

(4.33)

Looking carefully at the first two rules in Eq. (4.33) we can see that the sign
of is the same as the sign on the error, e. Furthermore, the absence of
in the third rule corresponds to an e of 0. Thus, we can unify the three rules
into a single expression:

. (4.34)

This rule can be extended to train the bias by noting that a bias is simply
a weight whose input is always 1. We can thus replace the input in Eq.
(4.34) with the input to the bias, which is 1. The result is the perceptron
rule for a bias:

. (4.35)

1w

1

3

2

If t a, then w1
new w1

old.==

If t 1 and a 0, then w1
new w1

old p.+== =

If t 0 and a 1, then w1
new w1

old p.–== =

If t a, then w1
new w1

old.==

e t a–=

If e 1, then w1
new w1

old p .+= =

If e 1,– then w1
new w1

old p–= .=

If e 0, then w1
new w1

old= . =

p p

w1
new w1

old ep+ w1
old t a–()p+= =

p

bnew bold e+=

Perceptron Learning Rule

4-13

4

Training Multiple-Neuron Perceptrons
The perceptron rule, as given by Eq. (4.34) and Eq. (4.35), updates the
weight vector of a single neuron perceptron. We can generalize this rule for
the multiple-neuron perceptron of Figure 4.1 as follows. To update the ith
row of the weight matrix use:

. (4.36)

To update the ith element of the bias vector use:

. (4.37)

The perceptron rule can be written conveniently in matrix notation:

, (4.38)

and

. (4.39)

To test the perceptron learning rule, consider again the apple/orange rec-
ognition problem of Chapter 3. The input/output prototype vectors will be

. (4.40)

(Note that we are using 0 as the target output for the orange pattern, ,
instead of - 1, as was used in Chapter 3. This is because we are using the

 transfer function, instead of .)

Typically the weights and biases are initialized to small random numbers.
Suppose that here we start with the initial weight matrix and bias:

, . (4.41)

The first step is to apply the first input vector, , to the network:

(4.42)

wi
new wi

old eip+=

bi
new bi

old ei+=

Perceptron Rule

Wnew Wold epT+=

bnew bold e+=

2
2+

p1

1

1–

1–

t1, 0= =

 
 
 
 
 

p2

1

1

1–

t2, 1= =

 
 
 
 
 

p1

hardlim hardlims

W 0.5 1– 0.5–= b 0.5=

p1

a hardlim Wp1 b+() hardlim 0.5 1– 0.5–

1

1–

1–

0.5+

 
 
 
 
 

= =

hardlim 2.5() 1= =

4 Perceptron Learning Rule

4-14

Then we calculate the error:

. (4.43)

The weight update is

(4.44)

The bias update is

. (4.45)

This completes the first iteration.

The second iteration of the perceptron rule is:

(4.46)

(4.47)

(4.48)

(4.49)

The third iteration begins again with the first input vector:

(4.50)

(4.51)

(4.52)

e t1 a– 0 1– 1–= = =

Wnew Wold epT+ 0.5 1– 0.5– 1–() 1 1– 1–+

0.5– 0 0.5 .

= =

=

bnew bold e+ 0.5 1–()+ 0.5–= = =

a hardlim Wp2 b+() hardlim 0.5– 0 0.5

1

1

1–

0.5–()+()= =

hardlim 0.5–() 0= =

e t2 a– 1 0– 1= = =

Wnew Wold epT+ 0.5– 0 0.5 1 1 1 1–+ 0.5 1 0.5–= = =

bnew bold e+ 0.5– 1+ 0.5= = =

a hardlim Wp1 b+() hardlim 0.5 1 0.5–

1

1–

1–

0.5+()= =

hardlim 0.5() 1= =

e t1 a– 0 1– 1–= = =

Wnew Wold epT+ 0.5 1 0.5– 1–() 1 1– 1–+

0.5– 2 0.5

= =

=

Proof of Convergence

4-15

4

. (4.53)

If you continue with the iterations you will find that both input vectors will
now be correctly classified. The algorithm has converged to a solution. Note
that the final decision boundary is not the same as the one we developed in
Chapter 3, although both boundaries correctly classify the two input vec-
tors.

To experiment with the perceptron learning rule, use the Neural Network
Design Demonstration Perceptron Rule (nnd4pr).

Proof of Convergence
Although the perceptron learning rule is simple, it is quite powerful. In
fact, it can be shown that the rule will always converge to weights that ac-
complish the desired classification (assuming that such weights exist). In
this section we will present a proof of convergence for the perceptron learn-
ing rule for the single-neuron perceptron shown in Figure 4.5.

Figure 4.5 Single-Neuron Perceptron

The output of this perceptron is obtained from

. (4.54)

The network is provided with the following examples of proper network be-
havior:

. (4.55)

where each target output, , is either or .

Notation
To conveniently present the proof we will first introduce some new nota-
tion. We will combine the weight matrix and the bias into a single vector:

bnew bold e+ 0.5 1–()+ 0.5–= = =

p1

an

Inputs

b

p2
p3

pR
w1,R

w1,1

1

AA
AAΣ

AA
AA

a = hardlim (1wTp + b)

Hard Limit Neuron

a hardlim wT
1 p b+()=

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

tq 0 1

4 Perceptron Learning Rule

4-16

. (4.56)

We will also augment the input vectors with a 1, corresponding to the bias
input:

. (4.57)

Now we can express the net input to the neuron as follows:

. (4.58)

The perceptron learning rule for a single-neuron perceptron (Eq. (4.34) and
Eq. (4.35)) can now be written

. (4.59)

The error can be either , or . If , then no change is made to
the weights. If , then the input vector is added to the weight vector.
If , then the negative of the input vector is added to the weight vec-
tor. If we count only those iterations for which the weight vector is changed,
the learning rule becomes

, (4.60)

where is the appropriate member of the set

. (4.61)

We will assume that a weight vector exists that can correctly categorize all
 input vectors. This solution will be denoted . For this weight vector

we will assume that

 if , (4.62)

and

 if . (4.63)

Proof
We are now ready to begin the proof of the perceptron convergence theo-
rem. The objective of the proof is to find upper and lower bounds on the
length of the weight vector at each stage of the algorithm.

x w1

b
=

zq
pq

1
=

n wT
1 p b+ xTz= =

xnew xold ez+=

e 1 1– 0 e 0=
e 1=

e 1–=

x k() x k 1–() z' k 1–()+=

z' k 1–()

z1 z2 … zQ z– 1 z– 2 … z– Q, , , , , , ,{ }

Q x∗

x∗ T
zq δ 0> > tq 1=

x∗ T
zq δ– 0< < tq 0=

Proof of Convergence

4-17

4

Assume that the algorithm is initialized with the zero weight vector:
. (This does not affect the generality of our argument.) Then, af-

ter iterations (changes to the weight vector), we find from Eq. (4.60):

. (4.64)

If we take the inner product of the solution weight vector with the weight
vector at iteration we obtain

. (4.65)

From Eq. (4.61)ÐEq. (4.63) we can show that

. (4.66)

Therefore

. (4.67)

From the Cauchy-Schwartz inequality (see [Brog91])

, (4.68)

where

. (4.69)

If we combine Eq. (4.67) and Eq. (4.68) we can put a lower bound on the
squared length of the weight vector at iteration :

. (4.70)

Next we want to find an upper bound for the length of the weight vector.
We begin by finding the change in the length at iteration :

(4.71)

Note that

x 0() 0=
k

x k() z' 0() z' 1() … z' k 1–()+ + +=

k

x∗ T
x k() x∗ T

z' 0() x∗ T
z' 1() … x∗ T

z' k 1–()+ + +=

x∗ T
z' i() δ>

x∗ T
x k() kδ>

x∗ T
x k()()

2
x∗ 2

x k() 2≤

x 2 xTx=

k

x k() 2 x∗ T
x k()()

2

x∗ 2
--------------------------- kδ()2

x∗ 2
------------->≥

k

x k() 2 xT k()x k()=

xT k 1–()x k 1–() 2xT k 1–()z' k 1–()+=

z'T k 1–()z' k 1–()+

x k 1–() z' k 1–()+[] T x k 1–() z' k 1–()+[]=

4 Perceptron Learning Rule

4-18

, (4.72)

since the weights would not be updated unless the previous input vector
had been misclassified. Now Eq. (4.71) can be simplified to

. (4.73)

We can repeat this process for , , etc., to obtain

. (4.74)

If , this upper bound can be simplified to

. (4.75)

We now have an upper bound (Eq. (4.75)) and a lower bound (Eq. (4.70)) on
the squared length of the weight vector at iteration . If we combine the
two inequalities we find

 or . (4.76)

Because has an upper bound, this means that the weights will only be
changed a finite number of times. Therefore, the perceptron learning rule
will converge in a finite number of iterations.

The maximum number of iterations (changes to the weight vector) is in-
versely related to the square of . This parameter is a measure of how close
the solution decision boundary is to the input patterns. This means that if
the input classes are difficult to separate (are close to the decision bound-
ary) it will take many iterations for the algorithm to converge.

Note that there are only three key assumptions required for the proof:

1. A solution to the problem exists, so that Eq. (4.66) is satisfied.

2. The weights are only updated when the input vector is misclassified,
therefore Eq. (4.72) is satisfied.

3. An upper bound, , exists for the length of the input vectors.

Because of the generality of the proof, there are many variations of the per-
ceptron learning rule that can also be shown to converge. (See Exercise
E4.9.)

Limitations
The perceptron learning rule is guaranteed to converge to a solution in a
finite number of steps, so long as a solution exists. This brings us to an im-

xT k 1–()z' k 1–() 0≤

x k() 2 x k 1–() 2 z' k 1–() 2+≤

x k 1–() 2 x k 2–() 2

x k() 2 z' 0() 2 … z' k 1–() 2+ +≤

Π max z' i() 2{ }=

x k() 2 kΠ≤

k

kΠ x k() 2 kδ()2

x∗ 2
------------->≥ k

Π x∗ 2

δ2
-----------------<

k

δ

Π

Proof of Convergence

4-19

4

portant question. What problems can a perceptron solve? Recall that a sin-
gle-neuron perceptron is able to divide the input space into two regions.
The boundary between the regions is defined by the equation

. (4.77)

This is a linear boundary (hyperplane). The perceptron can be used to clas-
sify input vectors that can be separated by a linear boundary. We call such
vectors linearly separable. The logical AND gate example on page 4-7 illus-
trates a two-dimensional example of a linearly separable problem. The ap-
ple/orange recognition problem of Chapter 3 was a three-dimensional
example.

Unfortunately, many problems are not linearly separable. The classic ex-
ample is the XOR gate. The input/target pairs for the XOR gate are

.

This problem is illustrated graphically on the left side of Figure 4.6, which
also shows two other linearly inseparable problems. Try drawing a straight
line between the vectors with targets of 1 and those with targets of 0 in any
of the diagrams of Figure 4.6.

Figure 4.6 Linearly Inseparable Problems

It was the inability of the basic perceptron to solve such simple problems
that led, in part, to a reduction in interest in neural network research dur-
ing the 1970s. Rosenblatt had investigated more complex networks, which
he felt would overcome the limitations of the basic perceptron, but he was
never able to effectively extend the perceptron rule to such networks. In
Chapter 11 we will introduce multilayer perceptrons, which can solve arbi-
trary classification problems, and will describe the backpropagation algo-
rithm, which can be used to train them.

wT
1 p b+ 0=

Linear Separability

p1
0

0
= t1 0=,

 
 
 

p2
0

1
= t2 1=,

 
 
 

p3
1

0
= t3 1=,

 
 
 

p4
1

1
= t4 0=,

 
 
 

4 Perceptron Learning Rule

4-20

Summary of Results

Perceptron Architecture

Decision Boundary

.

The decision boundary is always orthogonal to the weight vector.

Single-layer perceptrons can only classify linearly separable vectors.

Perceptron Learning Rule

where .

p a

1

n

AA
AAW

AA
AA

b

R x 1
S x R

S x 1

S x 1

S x 1

Input

R SAA
AA
AA

a = hardlim (Wp + b)

Hard Limit Layer

a hardlim Wp b+()= W

wT
1

wT
2

wT
S

= …

ai hardlim ni() hardlim wT
i p bi+()= =

wT
i p bi+ 0=

Wnew Wold epT+=

bnew bold e+=

e t a–=

Solved Problems

4-21

4

Solved Problems

P4.1 Solve the three simple classification problems shown in Figure
P4.1 by drawing a decision boundary. Find weight and bias values
that result in single-neuron perceptrons with the chosen decision
boundaries.

Figure P4.1 Simple Classification Problems

First we draw a line between each set of dark and light data points.

The next step is to find the weights and biases. The weight vectors must be
orthogonal to the decision boundaries, and pointing in the direction of
points to be classified as 1 (the dark points). The weight vectors can have
any length we like.

Here is one set of choices for the weight vectors:

(a) , (b) , (c) .

(a) (b) (c)

(a) (b) (c)

1w

1w
1w

(a) (b) (c)

wT
1 2– 1= wT

1 0 2–= wT
1 2 2–=

4 Perceptron Learning Rule

4-22

Now we find the bias values for each perceptron by picking a point on the
decision boundary and satisfying Eq. (4.15).

This gives us the following three biases:

(a) , (b) , (c)

We can now check our solution against the original points. Here we test the
first network on the input vector .

We can use MATLAB to automate the testing process and to try new
points. Here the first network is used to classify a point that was not in the
original problem.

w=[-2 1]; b = 0;

a = hardlim(w*[1;1]+b)

a =

0

P4.2 Convert the classification problem defined below into an equiva-
lent problem definition consisting of inequalities constraining
weight and bias values.

Each target indicates whether or not the net input in response to must
be less than 0, or greater than or equal to 0. For example, since is 1, we

wT
1 p b+ 0

b wT
1 p–

=

=

b 2– 1
0

0
– 0= = b 0 2–

0

1–
– 2–= = b 2 2–

2–

1
– 6= =

p 2– 2
T

=

a hardlim wT
1 p b+()

hardlim 2– 1
2–

2
0+

 
 
 

hardlim 6()

1

=

=

=

=

» 2 + 2

ans =
 4

p1
0

2
= t1 1=,

 
 
 

p2
1

0
= t2 1=,

 
 
 

p3
0

2–
= t3 0=,

 
 
 

p4
2

0
= t4 0=,

 
 
 

ti pi
t1

Solved Problems

4-23

4

know that the net input corresponding to must be greater than or equal
to 0. Thus we get the following inequality:

Applying the same procedure to the input/target pairs for ,
and results in the following set of inequalities.

Solving a set of inequalities is more difficult than solving a set of equalities.
One added complexity is that there are often an infinite number of solu-
tions (just as there are often an infinite number of linear decision bound-
aries that can solve a linearly separable classification problem).

However, because of the simplicity of this problem, we can solve it by
graphing the solution spaces defined by the inequalities. Note that
only appears in inequalities (ii) and (iv), and only appears in inequal-
ities (i) and (iii). We can plot each pair of inequalities with two graphs.

Any weight and bias values that fall in both dark gray regions will solve
the classification problem.

Here is one such solution:

.

p1

Wp1 b+ 0
0w1 1, 2w1 2, b 0≥

2w1 2, b+ 0.≥
+ +

≥

p2 t2,{ } p3 t3,{ }
p4 t4,{ }

2w1 2, b 0≥+ i()
w1 1, b 0≥+ ii()
2w1 2,– b 0<+ iii()

2w1 1, b 0<+ iv()

w1 1,
w1 2,

w1,1

b

ii

iv

w1,2

b
iii i

W 2– 3= b 3=

4 Perceptron Learning Rule

4-24

P4.3 We have a classification problem with four classes of input vector.
The four classes are

class 1: , class 2: ,

class 3: , class 4: .

Design a perceptron network to solve this problem.

To solve a problem with four classes of input vector we will need a percep-
tron with at least two neurons, since an -neuron perceptron can categorize

 classes. The two-neuron perceptron is shown in Figure P4.2.

Figure P4.2 Two-Neuron Perceptron

LetÕs begin by displaying the input vectors, as in Figure P4.3. The light cir-
cles indicate class 1 vectors, the light squares indicate class 2 vectors,
the dark circles indicate class 3 vectors, and the dark squares indicate
class 4 vectors.

A two-neuron perceptron creates two decision boundaries. Therefore, to di-
vide the input space into the four categories, we need to have one decision
boundary divide the four classes into two sets of two. The remaining bound-
ary must then isolate each class. Two such boundaries are illustrated in
Figure P4.4. We now know that our patterns are linearly separable.

p1
1

1
= p2

1

2
=,

 
 
 

p3
2

1–
= p4

2

0
=,

 
 
 

p5
1–

2
= p6

2–

1
=,

 
 
 

p7
1–

1–
= p8

2–

2–
=,

 
 
 

S
2S

p a

1

n

AA
AAW

AA
AA

b

2 x 1
2 x 2

2 x 1

2 x 1

2 x 1

Input

2 2AA
AA
AA

a = hardlim (Wp + b)

Hard Limit Layer

Solved Problems

4-25

4Figure P4.3 Input Vectors for Problem P4.3

Figure P4.4 Tentative Decision Boundaries for Problem P4.3

The weight vectors should be orthogonal to the decision boundaries and
should point toward the regions where the neuron outputs are 1. The next
step is to decide which side of each boundary should produce a 1. One choice
is illustrated in Figure P4.5, where the shaded areas represent outputs of
1. The darkest shading indicates that both neuron outputs are 1. Note that
this solution corresponds to target values of

class 1: , class 2: ,

class 3: , class 4: .

We can now select the weight vectors:

1

2

3

4

1

2

3

4

t1
0

0
= t2

0

0
=,

 
 
 

t3
0

1
= t4

0

1
=,

 
 
 

t5
1

0
= t6

1

0
=,

 
 
 

t7
1

1
= t8

1

1
=,

 
 
 

4 Perceptron Learning Rule

4-26

 and .

Note that the lengths of the weight vectors is not important, only their di-
rections. They must be orthogonal to the decision boundaries. Now we can
calculate the bias by picking a point on a boundary and satisfying Eq.
(4.15):

,

.

Figure P4.5 Decision Regions for Problem P4.3

In matrix form we have

 and ,

which completes our design.

P4.4 Solve the following classification problem with the perceptron
rule. Apply each input vector in order, for as many repetitions as
it takes to ensure that the problem is solved. Draw a graph of the
problem only after you have found a solution.

w1
3–

1–
= w2

1

2–
=

b1 wT
1– p 3– 1–– 0

1
1= = =

b2 wT
2– p 1 2–– 0

0
0= = =

1

2

3

4

W
wT

1

wT
2

3– 1–

1 2–
= = b 1

0
=

Solved Problems

4-27

4

Use the initial weights and bias:

.

We start by calculating the perceptronÕs output for the first input vector
, using the initial weights and bias.

The output does not equal the target value , so we use the perceptron
rule to find new weights and biases based on the error.

We now apply the second input vector , using the updated weights and
bias.

This time the output is equal to the target . Application of the percep-
tron rule will not result in any changes.

We now apply the third input vector.

p1
2

2
= t1 0=,

 
 
 

p2
1

2–
= t2 1=,

 
 
 

p3
2–

2
= t3 0=,

 
 
 

p4
1–

1
= t4 1=,

 
 
 

W 0() 0 0= b 0() 0=

a
p1

a hardlim W 0()p1 b 0()+()

hardlim 0 0
2

2
0+

 
 
 

hardlim 0() 1

=

= = =

a t1

e t1 a– 0 1– 1–= = =

W 1() W 0() ep1
T+ 0 0 1–() 2 2+ 2– 2–

b 1() b 0() e+ 0 1–()+ 1–

= = =

= = =

p2

a hardlim W 1()p2 b 1()+()

hardlim 2– 2–
1

2–
1–

 
 
 

hardlim 1() 1

=

= = =

a t2

W 2() W 1()

b 2() b 1()

=

=

4 Perceptron Learning Rule

4-28

The output in response to input vector is equal to the target , so there
will be no changes.

We now move on to the last input vector .

This time the output does not equal the appropriate target . The per-
ceptron rule will result in a new set of values for and .

We now must check the first vector again. This time the output is
equal to the associated target .

Therefore there are no changes.

The second presentation of results in an error and therefore a new set
of weight and bias values.

a hardlim W 2()p3 b 2()+()

hardlim 2– 2–
2–

2
1–

 
 
 

hardlim 1–() 0

=

= = =

p3 t3

W 3() W 2()

b 3() b 2()

=

=

p4

a hardlim W 3()p4 b 3()+()

hardlim 2– 2–
1–

1
1–

 
 
 

hardlim 1–() 0

=

= = =

a t4
W b

e t4 a– 1 0– 1= = =

W 4() W 3() ep4
T+ 2– 2– 1() 1– 1+ 3– 1–

b 4() b 3() e+ 1– 1+ 0

= = =

= = =

p1 a
t1

a hardlim W 4()p1 b 4()+()

hardlim 3– 1–
2

2
0+

 
 
 

hardlim 8–() 0

=

= = =

W 5() W 4()

b 5() b 4()

=

=

p2

Solved Problems

4-29

4

Here are those new values:

Cycling through each input vector once more results in no errors.

Therefore the algorithm has converged. The final solution is:

.

Now we can graph the training data and the decision boundary of the solu-
tion. The decision boundary is given by

.

To find the intercept of the decision boundary, set :

.

To find the intercept, set :

.

a hardlim W 5()p2 b 5()+()

hardlim 3– 1–
1

2–
0+

 
 
 

hardlim 1–() 0

=

= = =

e t2 a– 1 0– 1= = =

W 6() W 5() ep2
T+ 3– 1– 1() 1 2–+ 2– 3–

b 6() b 5() e+ 0 1+ 1.

= = =

= = =

a hardlim W 6()p3 b 6()+() hardlim 2– 3–
2–

2
1+

 
 
 

0 t3= = = =

a hardlim W 6()p4 b 6()+() hardlim 2– 3–
1–

1
1+

 
 
 

1 t4

a hardlim W 6()p1 b 6()+() hardlim 2– 3–
2

2
1+

 
 
 

0 t1

a hardlim W 6()p2 b 6()+() hardlim 2– 3–
1

2–
1+

 
 
 

1 t2= = = =

= = = =

= = = =

W 2– 3–= b 1=

n Wp b+ w1 1, p1 w1 2, p2 b+ + 2p– 1 3p2– 1+ 0= = = =

p2 p1 0=

p2
b

w1 2,
----------– 1

3–
------– 1

3
---= = = if p1 0=

p1 p2 0=

p1
b

w1 1,
----------– 1

2–
------– 1

2
---= = = if p2 0=

4 Perceptron Learning Rule

4-30

The resulting decision boundary is illustrated in Figure P4.6.

Figure P4.6 Decision Boundary for Problem P4.4

Note that the decision boundary falls across one of the training vectors.
This is acceptable, given the problem definition, since the hard limit func-
tion returns 1 when given an input of 0, and the target for the vector in
question is indeed 1.

P4.5 Consider again the four-class decision problem that we introduced
in Problem P4.3. Train a perceptron network to solve this problem
using the perceptron learning rule.

If we use the same target vectors that we introduced in Problem P4.3, the
training set will be:

.

LetÕs begin the algorithm with the following initial weights and biases:

, .

The first iteration is

,

W

p1
1

1
= t1

0

0
=,

 
 
 

p2
1

2
= t2

0

0
=,

 
 
 

p3
2

1–
= t3

0

1
=,

 
 
 

p4
2

0
= t4

0

1
=,

 
 
 

p5
1–

2
= t5

1

0
=,

 
 
 

p6
2–

1
= t6

1

0
=,

 
 
 

p7
1–

1–
= t7

1

1
=,

 
 
 

p8
2–

2–
= t8

1

1
=,

 
 
 

W 0() 1 0

0 1
= b 0() 1

1
=

a hardlim W 0()p1 b 0()+() hardlim 1 0

0 1

1

1

1

1
+() 1

1
= = =

Solved Problems

4-31

4

,

,

.

The second iteration is

,

,

,

.

The third iteration is

,

,

,

e t1 a– 0

0

1

1
– 1–

1–
= = =

W 1() W 0() ep1
T+ 1 0

0 1

1–

1–
1 1+ 0 1–

1– 0
= = =

b 1() b 0() e+ 1

1

1–

1–
+ 0

0
= = =

a hardlim W 1()p2 b 1()+() hardlim 0 1–

1– 0

1

2

0

0
+() 0

0
= = =

e t2 a– 0

0

0

0
– 0

0
= = =

W 2() W 1() ep2
T+ 0 1–

1– 0

0

0
1 2+ 0 1–

1– 0
= = =

b 2() b 1() e+ 0

0

0

0
+ 0

0
= = =

a hardlim W 2()p3 b 2()+() hardlim 0 1–

1– 0

2

1–

0

0
+() 1

0
= = =

e t3 a– 0

1

1

0
– 1–

1
= = =

W 3() W 2() ep3
T+ 0 1–

1– 0

1–

1
2 1–+ 2– 0

1 1–
= = =

4 Perceptron Learning Rule

4-32

.

Iterations four through eight produce no changes in the weights.

The ninth iteration produces

,

,

,

.

At this point the algorithm has converged, since all input patterns will be
correctly classified. The final decision boundaries are displayed in Figure
P4.7. Compare this result with the network we designed in Problem P4.3.

Figure P4.7 Final Decision Boundaries for Problem P4.5

b 3() b 2() e+ 0

0

1–

1
+ 1–

1
= = =

W 8() W 7() W 6() W 5() W 4() W 3()= = = = =

b 8() b 7() b 6() b 5() b 4() b 3()= = = = =

a hardlim W 8()p1 b 8()+() hardlim 2– 0

1 1–

1

1

1–

1
+() 0

1
= = =

e t1 a– 0

0

0

1
– 0

1–
= = =

W 9() W 8() ep1
T+ 2– 0

1 1–

0

1–
1 1+ 2– 0

0 2–
= = =

b 9() b 8() e+ 1–

1

0

1–
+ 1–

0
= = =

1

2

3

4

Epilogue

4-33

4

Epilogue

In this chapter we have introduced our first learning rule Ñ the perceptron
learning rule. It is a type of learning called supervised learning, in which
the learning rule is provided with a set of examples of proper network be-
havior. As each input is applied to the network, the learning rule adjusts
the network parameters so that the network output will move closer to the
target.

The perceptron learning rule is very simple, but it is also quite powerful.
We have shown that the rule will always converge to a correct solution, if
such a solution exists. The weakness of the perceptron network lies not
with the learning rule, but with the structure of the network. The standard
perceptron is only able to classify vectors that are linearly separable. We
will see in Chapter 11 that the perceptron architecture can be generalized
to mutlilayer perceptrons, which can solve arbitrary classification prob-
lems. The backpropagation learning rule, which is introduced in Chapter
11, can be used to train these networks.

In Chapters 3 and 4 we have used many concepts from the field of linear
algebra, such as inner product, projection, distance (norm), etc. We will
find in later chapters that a good foundation in linear algebra is essential
to our understanding of all neural networks. In Chapters 5 and 6 we will
review some of the key concepts from linear algebra that will be most im-
portant in our study of neural networks. Our objective will be to obtain a
fundamental understanding of how neural networks work.

4 Perceptron Learning Rule

4-34

Further Reading

[BaSu83] A. Barto, R. Sutton and C. Anderson, ÒNeuron-like adap-
tive elements can solve difficult learning control problems,Ó
IEEE Transactions on Systems, Man and Cybernetics, Vol.
13, No. 5, pp. 834Ð846, 1983.

A classic paper in which a reinforcement learning algo-
rithm is used to train a neural network to balance an in-
verted pendulum.

[Brog91] W. L. Brogan, Modern Control Theory, 3rd Ed., Englewood
Cliffs, NJ: Prentice-Hall, 1991.

A well-written book on the subject of linear systems. The
first half of the book is devoted to linear algebra. It also has
good sections on the solution of linear differential equa-
tions and the stability of linear and nonlinear systems. It
has many worked problems.

[McPi43] W. McCulloch and W. Pitts, ÒA logical calculus of the ideas
immanent in nervous activity,Ó Bulletin of Mathematical
Biophysics, Vol. 5, pp. 115Ð133, 1943.

This article introduces the first mathematical model of a
neuron, in which a weighted sum of input signals is com-
pared to a threshold to determine whether or not the neu-
ron fires.

[MiPa69] M. Minsky and S. Papert, Perceptrons, Cambridge, MA:
MIT Press, 1969.

A landmark book that contains the first rigorous study de-
voted to determining what a perceptron network is capable
of learning. A formal treatment of the perceptron was need-
ed both to explain the perceptronÕs limitations and to indi-
cate directions for overcoming them. Unfortunately, the
book pessimistically predicted that the limitations of per-
ceptrons indicated that the field of neural networks was a
dead end. Although this was not true, it temporarily cooled
research and funding for research for several years.

[Rose58] F. Rosenblatt, ÒThe perceptron: A probabilistic model for
information storage and organization in the brain,Ó Psycho-
logical Review, Vol. 65, pp. 386Ð408, 1958.

This paper presents the first practical artificial neural net-
work Ñ the perceptron.

Further Reading

4-35

4

[Rose61] F. Rosenblatt, Principles of Neurodynamics, Washington
DC: Spartan Press, 1961.

One of the first books on neurocomputing.

[WhSo92] D. White and D. Sofge (Eds.), Handbook of Intelligent Con-
trol, New York: Van Nostrand Reinhold, 1992.

Collection of articles describing current research and appli-
cations of neural networks and fuzzy logic to control sys-
tems.

4 Perceptron Learning Rule

4-36

Exercises

E4.1 Consider the classification problem defined below:

.

i. Draw a diagram of the single-neuron perceptron you would use to
solve this problem. How many inputs are required?

ii. Draw a graph of the data points, labeled according to their targets.
Is this problem solvable with the network you defined in part (i)?
Why or why not?

E4.2 Consider the classification problem defined below.

.

i. Design a single-neuron perceptron to solve this problem. Design the
network graphically, by choosing weight vectors that are orthogonal
to the decision boundaries.

ii. Test your solution with all four input vectors.

iii. Classify the following input vectors with your solution. You can ei-
ther perform the calculations manually or with MATLAB.

iv. Which of the vectors in part (iii) will always be classified the same
way, regardless of the solution values for and ? Which may
vary depending on the solution? Why?

E4.3 Solve the classification problem in Exercise E4.2 by solving inequalities (as
in Problem P4.2), and repeat parts (ii) and (iii) with the new solution. (The
solution is more difficult than Problem P4.2, since you canÕt isolate the
weights and biases in a pairwise manner.)

p1
1–

1
= t1 1=,

 
 
 

p2
0

0
= t2 1=,

 
 
 

p3
1

1–
= t3 1=,

 
 
 

p4
1

0
= t4 0=,

 
 
 

p5
0

1
= t5 0=,

 
 
 

p1
1–

1
= t1 1=,

 
 
 

p2
1–

1–
= t2 1=,

 
 
 

p3
0

0
= t3 0=,

 
 
 

p4
1

0
= t4 0=,

 
 
 

» 2 + 2

ans =
 4

p5
2–

0
= p6

1

1
= p7

0

1
= p8

1–

2–
=

W b

Exercises

4-37

4

E4.4 Solve the classification problem in Exercise E4.2 by applying the percep-
tron rule to the following initial parameters, and repeat parts (ii) and (iii)
with the new solution.

E4.5 Prove mathematically (not graphically) that the following problem is un-
solvable for a two-input/single-neuron perceptron.

(Hint: start by rewriting the input/target requirements as inequali-
ties that constrain the weight and bias values.)

E4.6 The symmetric hard limit function is sometimes used in perceptron net-
works, instead of the hard limit function. Target values are then taken
from the set [- 1, 1] instead of [0, 1].

i. Write a simple expression that maps numbers in the ordered set [0,
1] into the ordered set [- 1, 1]. Write the expression that performs
the inverse mapping.

ii. Consider two single-neuron perceptrons with the same weight and
bias values. The first network uses the hard limit function ([0, 1]
values), and the second network uses the symmetric hard limit
function. If the two networks are given the same input , and up-
dated with the perceptron learning rule, will their weights continue
to have the same value?

iii. If the changes to the weights of the two neurons are different, how
do they differ? Why?

iv. Given initial weight and bias values for a standard hard limit per-
ceptron, create a method for initializing a symmetric hard limit per-
ceptron so that the two neurons will always respond identically
when trained on identical data.

E4.7 The vectors in the ordered set defined below were obtained by measuring
the weight and ear lengths of toy rabbits and bears in the Fuzzy Wuzzy An-
imal Factory. The target values indicate whether the respective input vec-
tor was taken from a rabbit (0) or a bear (1). The first element of the input
vector is the weight of the toy, and the second element is the ear length.

W 0() 0 0= b 0() 0=

p1
1–

1
= t1 1=,

 
 
 

p2
1–

1–
= t2 0=,

 
 
 

p3
1

1–
= t3 1=,

 
 
 

p4
1

1
= t4 0=,

 
 
 

n = Wp + b

a = hardlims (n)

p

» 2 + 2

ans =
 4

p1
1

4
= t1 0=,

 
 
 

p2
1

5
= t2 0=,

 
 
 

p3
2

4
= t3 0=,

 
 
 

p4
2

5
= t4 0=,

 
 
 

4 Perceptron Learning Rule

4-38

i. Use MATLAB to initialize and train a network to solve this Òpracti-
calÓ problem.

ii. Use MATLAB to test the resulting weight and bias values against
the input vectors.

iii. Alter the input vectors to ensure that the decision boundary of any
solution will not intersect one of the original input vectors (i.e., to
ensure only robust solutions are found). Then retrain the network.

E4.8 Consider again the four-category classification problem described in Prob-
lems P4.3 and P4.5. Suppose that we change the input vector to

.

i. Is the problem still linearly separable? Demonstrate your answer
graphically.

ii. Use MATLAB and to initialize and train a network to solve this
problem. Explain your results.

iii. If is changed to

is the problem linearly separable?

iv. With the from (iii), use MATLAB to initialize and train a net-
work to solve this problem. Explain your results.

E4.9 One variation of the perceptron learning rule is

where is called the learning rate. Prove convergence of this algorithm.
Does the proof require a limit on the learning rate? Explain.

p5
3

1
= t5 1=,

 
 
 

p6
3

2
= t6 1=,

 
 
 

p7
4

1
= t7 1=,

 
 
 

p8
4

2
= t8 1=,

 
 
 

p3

p3
2

2
=

» 2 + 2

ans =
 4

p3

p3
2

1.5
=

p3

Wnew Wold αepT+=

bnew bold αe+=

α

