
Ouroboros Leios: design goals and concepts
AN IOG DISCUSSION PAPER

Duncan Coutts
duncan@well-typed.com
duncan.coutts@iohk.io

Giorgos Panagiotakos
giorgos.panagiotakos@iohk.io

Matthias Fitzi
matthias.fitzi@iohk.io

Version 1.0, November 2022

The purpose of Ouroboros Leios

The motivation for Ouroboros Leios – a new Ouroboros family variant – is to substantially
increase throughput, while achieving at least as good security properties as previous Ouroboros
variants.

Existing variants of the Ouroboros blockchain algorithm are limited in the throughput they
can achieve – both data throughput and CPU processing throughput. They are not primarily
limited by the resources available to each node (network capacity or CPU performance), but by
the nature of the data dependencies and communication dependencies within the distributed
algorithm. Improving this requires a new algorithm design – which is what Ouroboros Leios is
intended to be.

In addition, a new design provides an opportunity to incorporate other useful modern
features: tiered transaction fees with corresponding levels of service priority, and faster chain
synchronisation by removing the need to execute every smart contract.

There are of course trade-offs in the design, in particular increased resource use and increased
transaction latency, and these are discussed.

The new Ouroboros Leios design is not a small or modular extension however. It is a
substantial extension of the Ouroboros Praos and Genesis designs, and the changes to a practical
implementation will also be substantial.

Intended audience

The intended audience for this discussion paper is anyone in the Cardano community with an
interest in the performance of Cardano, or in the potential future evolution of Cardano. The
discussion is somewhat technical, so people with a technical curiosity will get the most out of it.
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1 Existing throughput limitations

A characteristic of network and CPU resources is that they are ‘use it or loose it’: time spent
not using the available resources can never be regained. Thus using these resources in a ‘spiky’
fashion leaves the resources underutilised.

In the current deployed Ouroboros variant – Ouroboros Praos – we can observe two main
ways in which the algorithm does not fully utilise the network and computational resources
available on each node.

1.1 Block diffusion is a fraction of overall block time

In Praos, the time during which a block is forged and diffused across the network is only a
fraction of the overall average time between blocks. For example with the parameters for the
Cardano mainnet: blocks are produced on average every 20 seconds, but the time to diffuse
blocks across the network is expected to remain within 5 seconds (this is the ∆ parameter). This
means that on average three quarters of the time is spent idle. See Figure 1 for an illustration.

This can not be easily changed by tuning the parameters: the security argument for Praos
relies on the diffusion time (∆) being a fraction of the average time between blocks. Intuitively,
this is because if the diffusion time became a large fraction of the average block time then
there would be a higher and higher proportion of ‘block battles’, which would eat into the
security margins of the protocol. So for example, if the time between blocks was reduced, then
to maintain system security to the same level, the time allowable for diffusion (∆) would also
have to be reduced. This could only be reduced by reducing the size of blocks, or by reducing
the time budget per block for executing scripts in transactions. The overall effect would be to
reduce throughput, even taking into account the more frequent blocks.

Notice that if the slot leader schedule were public rather than private, then it would be
possible to more densely pack diffusion periods: four times more densely. This is the price
we pay for the added security of a private slot leader schedule in a traditional simple linear
blockchain.

Time

Example random Praos block production schedule

∆ = 5s mean block time = 20s

Figure 1: Praos block diffusion time (∆) is a fraction of average time between blocks
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Figure 2: Node (in)activity during pipelined block relay between five nodes

1.2 Block diffusion underutilises resources

The second, and more significant, way in which the available resources are not utilised is within
block diffusion itself: at any one moment while the new block spreads throughout the network
graph, only the nodes on the ‘information wavefront’ are active and utilising network and
computational resources. To put it another way: during block diffusion, before the block arrives
at a node, then that node is idle, and after it has downloaded, validated and forwarded the block
then it will return to being idle1.

See Figure 2 for an illustration. Note how most time for most nodes is spent idle. Something
that is not immediately clear from the illustration is that there is also relatively little overlap
between CPU activity and network activity on each node. This means the utilisation of each
resource is even less than it first appears.

1.2.1 Quantifying the CPU resource utilisation

Consider that validating a block is currently expected to take on the order of 50—100 millisec-
onds. So for each node – at best – this is only a few hundred milliseconds out of 5 seconds for
the overall ∆ diffusion time.

This cost is roughly doubled by the validation of transactions entering the mempool. This
cost is not within the diffusion critical path, and can be spread out over time. There are other
costs and overheads, but this gives an indication of the orders of magnitude involved.

1.2.2 Quantifying the network resource utilisation

The situation for network resource utilisation is more complex. There are two important
characteristics that affect the network resource use.

1. Nodes do not just send blocks to one downstream peer, they have many downstream peers.
This increases the network resource use proportionally to the number of downstream
peers.

2. Transmitting a block between two peers uses network resources only briefly: once on the
sending peer to ‘serialise’ the block onto the wire, and again briefly on the receiving peer
to ‘deserialise’ the block from the wire. Neither peer uses local network resources while
the block is ‘in flight’ between them.

1There is additional work after adopting a block to update and refill the mempool, which this the same order of
magnitude of work as the block validation itself.
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To quantify these effects, consider sending a 100kB block over a 1,000,000kB/s network link2

with 100ms of latency: the sending end will spend 0.1ms serialising the block onto the wire, and
then 100ms later the receiving end will also spend 0.1ms deserialising the block off of the wire.
If the same peer has 1,000 downstream nodes then overall it will keep its local network interface
busy for 100ms out of the overall 5000ms ∆ diffusion time.

Again, there are overheads but this gives an indication of the orders of magnitude involved.

2 Design goals

2.1 Throughput

The primary design goal is to increase blockchain throughput by utilising a significant fraction
of each node’s network bandwidth and CPU power, and do so on an essentially continuous
basis.

There are two primary measures and one derived measure of blockchain throughput that
we wish to increase:

1. data throughput, measured in bytes per second (typically as kilobytes per second, kB/s);

2. script throughput, measured in CPU seconds per wall-clock time in seconds3 (typically as
CPU milliseconds per wall-clock second, ms/s);

3. transaction throughput, measured in transactions per second (TPS). This is not an inde-
pendent measure but is derived from the other two. See Section 2.2 for a discussion of a
TPS as a measure.

To illustrate these two primary measures, let us consider what they are for the existing
Cardano mainnet. At the time of writing, Cardano mainnet blocks are permitted to be a
maximum of 88kB, and they are produced on average every 20 seconds. So the current data
throughput is 88kB/20s = 4.4kB/s.

For comparison with the resources that could be available, consider that a mid-to-high
end server in a data centre would have a 10Gbit/s network interface. If this server divides
its bandwidth between 1000 peer nodes (and we allow for around 20% overheads) then this
provides around 900kB/s of useful bandwidth per peer. Or consider that a 10Mbit/s home
broadband also provides around 900kB/s of useful bandwidth (given similar overheads).

For script throughput, at the time of writing Cardano mainnet blocks are permitted to use up
to a nominal4 40 milliseconds per block. So the current script throughput is 40ms/20s = 2ms/s.

For comparison with a script throughput of 2ms/s, consider that a single CPU core running
flat out has 1000ms/s of processing time available. If multiple cores are available and can be
utilised then the CPU seconds available per wall clock second will be greater than one.

It is worth noting that it is not sensible to try to utilise all of the network and CPU resources
at all times. Blockchain algorithms in the Ouroboros family rely on being able to switch forks,
which involves ‘catching up’ on that fork, and it is important to be able to catch up relatively
quickly – certainly faster than real time. Furthermore, since Ouroboros uses random Poisson
distributions for the block production schedules, then there will naturally be bursts and lulls of
work. This places a limit on what fraction of resources can be used in normal operation, so that
catching up can be done sufficiently quickly and so that the random bursts can be handled.

See also Section 8 for a discussion of how fast, and how resource-hungry we might want the
Cardano mainnet to be.

2This is approximately 10GBit/s, but makes the example’s numbers clearer.
3The unit is dimensionless, being seconds-per-second. We will nevertheless use a unit of ‘ms/s’ because the

seconds measure different things: CPU activity duration vs wall-clock duration.
4As calibrated on a reference machine. Actual times will vary.
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2.2 TPS

Transactions per second (TPS) is a measure of throughput that is often used to compare different
blockchain cryptocurrencies (and indeed other non-blockchain data processing systems). TPS is
a derivative measure, based on the data throughput, the script execution time throughput and
the size of the transactions. For this reason we focus on the underlying measures of data and
script execution throughput. The resulting TPS can be calculated.

So while it is a goal for Ouroboros Leios to substantially increase throughput measured
in TPS, this will be a consequence of increasing the data and script execution throughput, as
discussed in the previous section.

It is also worth being aware that TPS is measure that is fraught with difficulty in making fair
comparisons between systems. This is because it depends crucially on the size of a transaction
and on how long any scripts within it take to run. The simple way to make a system look good
on TPS measures is to use as small a transaction size as possible, with no (or very simple) scripts.

For example, suppose a blockchain has a data throughput of 500 kB/s. With 512 byte
transactions this would yield 1000 TPS. For the same data throughput but with transactions that
all upload huge 16kB scripts, the result would be just 31 TPS.

2.3 Latency

In the design of data processing systems it is often the case that there is a trade-off between
throughput and latency. Designs that process more transactions per second often do so at the
expense of an increase in the latency for individual transactions.

In the case of blockchain systems, the usual definition of transaction latency is the time
between when a user submits a transaction into the system and when it is included in a block
that is available to most5 other users. Note that this is not the time for the transaction to be in a
block that is stable with high probability.

For the Ouroboros Leios design we are prepared to make a reasonable sacrifice in transaction
latency in order to achieve a substantial improvement in throughput.

2.4 Security

Some contemporary high throughput cryptocurrency systems make security compromises to
achieve high throughput, such as only being resistant to a 30% adversary. By comparison, exist-
ing versions of Ouroboros are resistant up to a 50% stake adversary, albeit with comparatively
low throughput.

The goal for Ouroboros Leios is to achieve high throughput with no compromise on security:
to achieve the same or better formal security properties as previous versions of Ouroboros.

3 Design strategy

As discussed in Section 1.2, in Ouroboros Praos, diffusing blocks over the network only uses a
fraction of each node’s CPU and network resources. The fundamental reason for this is that a
distributed system of nodes is a parallel system, but the Ouroboros Praos blockchain algorithm
is a (mostly) sequential algorithm. Any sequential algorithm executed on a parallel system will
necessarily leave resources unused. The algorithm for constructing the blockchain is necessarily
sequential because the structure of the blockchain itself is linear. It is linear in the sense that
the data dependencies in a valid chain are linear: each block depends on the previous one. See
Figure 3 for an illustration. Specifically, validating a block relies on computing the ledger state
for the block, which is computed as a function of the ledger state for the previous block. Thus

5More precisely there will be latencies for reaching various proportions of users, such as 95% or 99%.
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Figure 3: A traditional blockchain with its linear data dependencies. For example: block B
depends on block A: the ledger state for B is computed from the ledger state for A
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Figure 4: An imaginary pattern of concurrent data dependencies between blocks. For example
block F depends on block A and C, but blocks D, E and F have no dependencies between them.

there is a direct data dependency between consecutive blocks, and overall this forms a linear
chain of data dependencies.

3.1 A concurrent blockchain and a parallel algorithm

Based on this observation, we can see that if we were to have a ‘concurrent blockchain’ with
enough concurrent data dependencies, then we may be able to find a parallel6 distributed algo-
rithm for constructing the chain. If we can control the degree of concurrency in the structure of
the chain and the degree parallelism in the algorithm, then this may allow us to increase the
workload to the point where we can use a substantial proportion of the resources available.

This is exactly what Ouroboros Leios attempts to do.
See Figure 4 for an illustration of an imaginary pattern of data dependencies between blocks.

In the example in the illustration there are up to three blocks at a time that are concurrent. One
can imagine how this pattern could be extended to higher numbers of concurrent blocks. The
higher the concurrency in the structure, the greater the opportunity to exploit more hardware
resources in parallel.

3.2 Ledgers on a concurrent blockchain

A somewhat concurrent blockchain structure has important implications for a ledger built on
that blockchain. The ledger would need to support the non-linear blockchain structure, and this
would not be possible for all ledgers. There are a couple important issues:

1. It is important to understand the meaning of a ledger that is formed from joining the
results of multiple concurrent blocks. This issue arises wherever multiple lines of data
dependencies join. For example in Figure 4, block F depends on block A and C, which are
concurrent with respect to each other. If mutually incompatible transactions are included
in concurrent blocks, what is the interpretation of the resulting ledger?

6We distinguish concurrency and parallelism: concurrency is about data or events that are not sequenced with
respect to each other, whereas parallelism is about using more computer hardware to compute more quickly.
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2. Where a ledger is formed from concurrent blocks that are later joined, the computational
costs need to be incurred predominantly with the concurrent blocks themselves and not
with the point where they join. Otherwise most of the parallel advantage of a concurrent
chain would be lost.

These are not simple issues. Transactions in a ledger can depend on each other, or be in conflict
with each other. By definition, concurrent blocks cannot depend on each other. So the challenge
is what to do about transactions in concurrent blocks that would depend or conflict with each
other.

3.2.1 Mostly independent transactions

On the other hand the opportunity arises from the fact that most transactions – that are ‘in
flight’ at the same time – are independent of each other, and independent transactions can be
processed concurrently. Indeed the ultimate limit on the degree of concurrency in the blockchain
structure is the extent to which in flight transactions are independent. The mixture of dependent
or independent in flight transactions is of course down to how the ledger is used. One can
imagine a specialised ledger managing a shared resource where most transactions depend or
conflict with each other, but for a general purpose ledger (such as a ‘layer 1’ platform) it is a
reasonable expectation that most in flight transactions are independent.

One non-solution is to delay the processing of transactions to the point where the ledger
from concurrent blocks are joined, and then process the transactions in a linear order that can
resolve their dependencies. This is a non-solution because it squanders the CPU parallelism
available, and will not be able to fully utilise CPU time.

3.2.2 Serialisability

The ‘gold standard’ in concurrent transaction processing (e.g. in centralised or distributed
databases7) is ‘serialisability’. Concurrently processing a collection of transactions is serialisable
if the result of the concurrent processing is the same as if the transactions were processed serially
in some order. Intuitively, this property means that we have a clear interpretation of the ledger:
we already understand what it means to process a series of transactions in order, and so if the
concurrent processing gives the same result then that understanding is preserved.

3.2.3 Optimistic concurrency control

For general purpose ledgers where we can assume most in-flight transactions are independent,
we can take an ‘optimistic’ approach to handle the few transactions that do turn out to conflict:

1. We process multiple blocks of transactions concurrently.

2. Within each block the transactions are processed in order, so dependencies between
transactions within a block can be handled normally.

3. When the results are joined, the blocks can put put into a linear order.

4. This gives rise to a linear order for the transactions: due to the blocks being put into an
order, and transactions within blocks already being ordered.

5. Any conflicting transactions can now be discarded. Specifically, in a set of conflicting
transactions, the first transaction is kept and the remainder are discarded.

7For further reading see https://en.wikipedia.org/wiki/Serializability
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With this approach, conflicting transactions will reduce the effective throughput, because they
get processed only to be later discarded. However if the rate of conflicts is not too high then
this is a reasonable trade-off. Note that it is crucial to avoid too many transactions artificially
conflicting with themselves by having the exact same transaction occur in concurrent blocks.

Importantly, to preserve parallelism, the detection and discarding of conflicting transactions
must be cheap relative to the cost of executing the transactions (e.g. running scripts and checking
cryptographic signatures).

3.2.4 UTxO style ledgers

Fortunately UTxO-style ledgers are well placed to address these issues. This is due to the fact
that transactions in UTxO ledgers explicitly identify all of their inputs and outputs up front,
and those dependencies are complete. They are complete in the sense that there are no other
‘side effects’ of the transaction other than the explicitly identified inputs and outputs. This
makes it straightforward to identify transactions that conflict with each other. It also means
that – provided the dependencies between transactions are respected – the transactions can be
reordered without changing the results. This makes it possible to do the serialisation procedure
outlined above correctly, and to do so relatively cheaply. The correctness of this process can be
formalised mathematically.

It has long been touted that UTxO ledgers have potential advantages for concurrency, but
it has not typically been effectively exploited. It is satisfying to find that this approach to
concurrency can finally exploit those advantages.

4 Design outline

All previous versions of Ouroboros use a simple traditional linear blockchain structure. In
contrast, Ouroboros Leios has an innovative new blockchain structure with concurrent data
dependencies. As discussed in Section 3, this is the key to unlocking the opportunity for increased
parallelism and resource utilisation. Ouroboros Leios exploits the concurrent data dependencies
in the blockchain structure by using a concurrent parallel distributed algorithm for constructing
the blockchain.

Furthermore Ouroboros Leios is a scalable algorithm, in the following sense: the degree of
concurrent data dependencies in the Leios blockchain structure can be controlled, which directly
influences the degree of parallelism available in the execution of the distributed algorithm for
constructing it, and directly influences the resource utilisation and throughput.

4.1 Algorithm overview

There is new terminology to be aware of for the new kinds of objects involved in the Leios
blockchain structure and algorithm: input blocks, endorsement blocks, endorsement reports, en-
dorsement certificates, and ranking blocks. Each of these will be covered as part of the algorithm
overview, in summary in Table 1, and again in detail in Section 4.2.

4.1.1 Creating input blocks

Nodes can be elected (by private stake-weighted VRF lottery) to produce an input block. When
doing so, the node takes a sequence of transactions from the mempool that are valid with respect
to a recent point on the node’s current chain (which will be a ranking block, see Section 4.1.6).
The node saves a reference to that same recent point on the chain. The reference will be used
later to ensure that other nodes will be able to validate the transactions in the input block against
the same ledger state. The node packs the transactions into an input block, along with the
reference to the point on the chain, the VRF proof and signs the block.
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Ranking blocks Endorsement blocks Input blocks

Acronym RB EB IB
Purpose consensus

ordering
IB existence
IB validity

carrying transactions

References one RB
many EBs

many IBs
zero or more EBs

one RB

Contains endorsement certifi-
cates

transactions

Frequency 1 per 15—30s 1 per 5—10 s 1 per 0.2—2 s

Table 1: Summary of the different block types, their purpose and relationships

4.1.2 Relaying and validating input blocks

The input block is made available to peer nodes and is relayed to all other nodes. When other
block producing nodes receive it, they validate the signature, the VRF proof and the transactions
within, using the ledger state corresponding to the ranking block that the input block references
(if available). Note that input blocks do not depend on each other and they can all be relayed
and validated independently of each other. In principle, input blocks can be generated at a high
rate by tuning the VRF lottery threshold. This is the way in which Ouroboros Leios can generate
a lot of useful work to do, and – just as importantly – can spread it out relatively evenly over
time.

4.1.3 Creating endorsement blocks

Nodes can also be elected (by another separate private stake-weighted VRF lottery) to produce
an endorsement block. These gather up references to recently seen valid input blocks that have
not yet been included in other endorsement blocks. They may sometimes also reference other
recent endorsement blocks that have not yet been included in a ranking block and where it
would be possible to create an endorsement certificate for them (which will be described shortly
in Section 4.1.5). They also include the usual block signature and VRF proof. These endorsement
blocks are the basis for other nodes to issue endorsement reports on the endorsement blocks
to say whether all the input blocks referenced by the endorsement block actually exist and are
valid. Endorsement blocks are made less frequently than input blocks but more frequently than
ranking blocks. Note that it is ok if different endorsement blocks are created concurrently by
different nodes and reference many of the same input blocks.

4.1.4 Relaying endorsement blocks and creating endorsement reports

The endorsement block is relayed to all other nodes in the usual way. When other block
producing nodes receive it, they stash it away until the time comes when they may need to
create an endorsement report for it. Endorsement blocks must be checked and reported on
a fixed number of slots after they are created. The number of slots is a protocol parameter
that is chosen to allow enough time for the endorsement block to be relayed over the network,
to reach all the nodes that will perform the checks. Additionally, there is yet another private
stake-weighted VRF lottery where block producers can be elected as a reporter. If a node has
been elected as a reporter in the slot in which the endorsement block must be checked, then
it will check that all the input blocks referenced by the endorsement block have already been
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seen and been verified8. If the endorsement block references other endorsement blocks then
it must check that it has seen enough endorsement reports for them that it would be possible
to assemble an endorsement certificate for them (see Section 4.1.5 for details). The node will
then create a signed endorsement report and relay it to all other nodes in the usual way. This
report contains a signature, the usual VRF proof, and a reference to the endorsement block in
question. Note that very many block producers are expected to be elected as reporters at once,
so that there will be lots of endorsement reports created and relayed around the network.

4.1.5 Creating endorsement certificates

The endorsement blocks and endorsement reports for those blocks are relayed to the block
producing nodes. Once enough endorsement reports for an endorsement block have been
collected then it becomes possible to create an endorsement certificate for the endorsement
block. The election of reporters is calibrated so that there are enough of them, and they are fairly
sampled from the stake, so that we should be able to get ‘enough’ endorsement reports. The
threshold for ‘enough’ is based on a statistical argument that lets us conclude (with a high degree
of confidence) that >50% of the stake endorses the given endorsement block, and thus endorses
the existence and validity of all the input blocks referenced by the endorsement block (either
directly or via references to other endorsement blocks). When such a threshold of endorsement
reports can be collected then they can be assembled into an endorsement certificate.

4.1.6 Creating ranking blocks

Nodes can be elected (by yet another private stake-weighted VRF lottery) to produce a ranking
block. These gather up references to recent endorsement blocks that have not yet been included
in previous ranking blocks – provided that the node can construct and include an endorsement
certificate for each one. This will often mean that recently received endorsement blocks cannot
yet be included because not enough endorsement reports have yet arrived to produce a corre-
sponding endorsement certificate. Such endorsement blocks will typically be included by the
next ranking block. The ranking blocks also form the ‘backbone’ of the overall chain, with each
ranking block referencing the previous one. They also include the usual block signature and
VRF proof.

Endorsement blocks can reference each other, but when they are included into a ranking
block, only the last in a chain needs to be included with an endorsement certificate. This is
because an endorsement certificate for an endorsement block that references previous endorse-
ments blocks implicitly covers those previous endorsements blocks.

There is a limit on the number of endorsement blocks that can be directly referenced in a
ranking block (along with their corresponding endorsement certificates). This is to limit the cost
of validating a ranking block. If a node has a choice about which endorsement blocks to include
to fit within the limit then it should choose the ‘biggest’ ones, meaning the ones that (directly or
indirectly) reference the most input blocks.

4.1.7 Relaying and validating ranking blocks

A newly created ranking block is made available to its immediate peers via a chain synchroni-
sation protocol. Other peers receive and validate the extended chain. The chain adoption rule
here is almost the same as in Praos: the longest valid chain wins (with the usual rules about fair
deterministic tie breaking). Each ranking block is considered valid if it references a previous
valid ranking block and contains references to endorsement blocks with corresponding valid

8The specification is that the check be performed as if it were done at the specific slot, but any equivalent check is
acceptable. For example it is ok to check the endorsement block earlier, but if not all input blocks have arrived yet
then the check has to be postponed.
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endorsement certificates. This is sufficient to conclude the chain is valid and adopt it. It is not
necessary to have also already downloaded or validated all the endorsement blocks and the
input blocks they reference. The valid chain is adopted immediately, while constructing the
corresponding ledger state will lag behind.

4.1.8 Constructing the ledger state for the ranking block chain

After adopting a new chain, the node must construct the corresponding ledger state. If necessary
this may involve downloading any missing endorsement and input blocks that were referenced
by the new ranking blocks in the chain.

The ledger state must be constructed as if all the transactions in all the input blocks (indirectly)
referenced by each ranking block were placed in order and validated in that order (see Section 4.5
for details of the order).

There is an important exception however: any transactions found to be in conflict are treated
as if they are not present in the ledger. This means that in a set of conflicting transactions, the first
transaction (in the transaction order) is accepted and the remaining ones are ignored. Note that
the ignored transactions are still physically in their original input blocks, and thus take up space,
but they are not logically part of the ledger.

Note that this specifies the outcome for the ledger layer, but not how it is achieved. It is
crucial for performance that the construction of the ranking block ledger state involves less
computation than fully validating all the transactions in order. See Section 4.6 for more details.

4.2 Blockchain structure

The Ouroboros Leios blockchain structure consists of three different kinds of blocks, plus
endorsement reports:

1. Ranking blocks (RBs)

2. Endorsement blocks (EBs)

3. Endorsement reports (ERs)

4. Input blocks (IBs)

See Figure 5 for an illustration.

4.2.1 Ranking blocks

The purpose of ranking blocks is to achieve consensus and an overall ordering. Each ranking
block references the previous ranking block, and references zero or more endorsement blocks
(and includes their corresponding endorsement certificates). Thus the ranking blocks form a
traditional linear blockchain, but instead of containing transactions, they contain references to
endorsement blocks. Indeed the ranking blocks form an Ouroboros Praos chain, which enables
the analysis and security results from Ouroboros Praos and Genesis to be carried over.

As in Praos, ranking blocks are created using a private leader schedule, based on VRFs and
weighted by stake. This means that ranking blocks have a random arrival pattern that follows a
Poisson distribution, where the average time between blocks can be tuned as needed. For global
deployments the average time between blocks would be expected to be similar to the 20s used
on the existing Cardano mainnet, but values in the range of 15—30 seconds could be reasonable.
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Figure 5: Data dependencies between blocks in Ouroboros Leios: each ranking block (RB)
references the previous ranking block and earlier endorsement blocks (EBs), which reference
still earlier input blocks (IBs). Input blocks also reference earlier ranking blocks.

4.2.2 Endorsement blocks

The purpose of endorsement blocks is to help agree on the existence and validity of input blocks.
They gather up a bundle of many input blocks to allow reporting on them as a bundle. This
amortises the cost of the construction and transmission of the reports over many input blocks.

Endorsement blocks are created using a private leader schedule, based on VRFs and weighted
by stake. The frequency of creation is expected to be tuned such that there are approximately
2—4 endorsement blocks per ranking block.

4.2.3 Endorsement reports and certificates

The purpose of endorsement reports is – in aggregate – to demonstrate the existence and validity
of the bundle of input blocks referenced by the endorsement block. In their aggregate form,
with enough of them to statistically represent >50% of the stake, we call them an endorsement
certificate.

The endorsement certificates are what makes it possible to adopt a chain of ranking blocks
even if not all of the referenced endorsement and input blocks have yet been seen: we know we
will be able to find those blocks and we know they will be valid. We know that on the basis that
the endorsement certificate demonstrates (to a high degree of confidence) that block producers
representing a majority of stake have seen the input blocks and checked that they are valid. This
also creates the opportunity for other blockchain consumers to skip validation of input blocks
and rely on the endorsement certificates to ensure validity.

4.2.4 Input blocks

The purpose of input blocks is to carry the blockchain payload: transactions. Each input block
contains a sequence of transactions. It also references a recent ranking block. This reference to a
ranking block is to make it explicit in which ledger state to use to validate the transactions in an
input block. Transactions within an input block can depend on each other.

Input blocks are also created using a private leader schedule using VRFs. They are intended
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to be created at a high rate. The throughput of the Leios chain is primarily determined by the
input block creation rate and their maximum size. Reasonable creation rates could be from one
input block every few seconds, up to several input blocks per second.

4.3 Further algorithm details

In addition to the overview in Section 4.1, there are some further details to the algorithm.

4.3.1 Mempool sharding

There is potentially a substantial amount of concurrency available between multiple ‘in flight’
input blocks, yielding potentially a high data bandwidth. This could all be squandered however
if most concurrent blocks contained mostly the same transactions. This is a real danger. It is to
be expected that two nodes that create an input block at the same time or a few seconds apart
will have very similar mempool contents, and so a naı̈ve way of picking transactions from the
mempool would be expected to yield blocks with a high degree of overlap.

There are many potential solutions to this problem and further prototyping and simulation
will be required to pick the best design. The current best candidate design is as follows. The
transaction author assigns each transaction a ‘colour’ from a set. This is represented as a number
from a limited range. Transaction authors should assign this colour randomly, unless they want
to submit multiple dependent transactions in rapid succession, in which case they should assign
the subsequent transactions the same colour. Multiple cooperating transaction authors creating
dependent transactions may also be able to arrange this.

When a node comes to create an input block, it generates a random sequence of colours,
and then for each colour in turn it selects all the transactions from the mempool with that
colour. It keeps going, selecting transactions in this way until the input block is full. This way,
different nodes will typically select different transactions, but dependent transactions can be
kept together.

In the existing Cardano implementation, the mempool is sized to be proportional to the
amount of in-flight data: twice the block size. In Ouroboros Leios, with all the concurrent
input blocks, there is a lot more in in-flight data and mempool sizes will need to be sized
proportionally.

4.3.2 Minimum and maximum times for inclusion

There is a minimum time between when an input block is created and when it is allowed to
be referenced in an endorsement block. Similarly there is a maximum time after which the
input block is no longer eligible to be referenced in an endorsement block. Similarly there is a
minimum and maximum times for endorsement blocks to be referenced in ranking blocks.

These times are selected so that there is a reasonable time interval in which the blocks
are eligible for inclusion. The effect is that input blocks that are not referenced by the first
possible endorsement block can get referenced by the next or subsequent endorsement blocks.
This provides a reasonable degree of protection from censorship, since many producers of
endorsement blocks (fairly sampled from the stake distribution) will have an opportunity to
include each input block before it expires when the maximum time bound is hit. This applies
similarly to endorsement blocks being included in ranking blocks.

The maximum bound is a defence against malicious block producer nodes that have the
right to produce many blocks but that delays doing so and then releases them all at once. The
maximum bound limits the size of such a flooding attack. The other part of the defence is
network prioritisation, discussed elsewhere.

The minimum bound serves two purposes: one is part of double signing protection as will
be discussed shortly, and the other is that it provides enough time for the block to be relayed
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across the network. Providing enough time means there is no unhelpful incentive for block
producers to compete on being slightly faster, and in particular no incentive for block producers
to cluster close together geographically, which would work against this important aspect of
decentralisation.

4.3.3 Double signing protection

The algorithm includes special measures to detect and handle the situation where a malicious or
poorly-configured node signs multiple different input or endorsement blocks in the same slot.
Note that this can happen accidentally when an SPO sets up an ‘active/active’ or ‘active/passive’
failover system, if there is ever confusion resulting in more than one node believing it is the
active node, and thus signing blocks. This protection is only needed for input blocks and
endorsement blocks, not ranking blocks, which is why this was not needed in Ouroboros Praos9.
Nodes keep track of recent input and endorsement blocks as part of the normal procedures.
If they receive a second block signed by the same block producer for the same slot number,
then this second block is added to a tracking set and the block (or at least the header) is further
relayed so that most other nodes will also see the duplicate. Any subsequent duplicate blocks
from the same signer in the same slot are not relayed, to avoid denial of service. This ensures
that most block producing nodes will have seen that there is a duplicate for a particular signer
(though they may have different blocks as evidence of this).

Now when a node comes to create an endorsement block, the rule is more complicated than
just selecting all available valid input blocks. Of course input blocks that ended up in the double
signature tracking set must not be included. Furthermore, there must have been enough time to
detect double signing, and so the rule is that there a fixed number of slots after the input block is
created, before which it is not allowed to be included into an endorsement block. The number of
slots is a protocol parameter that is chosen to allow enough time for any duplicate input block
(headers) to be to be relayed over the network. The rules for including endorsement blocks into
ranking blocks work analogously.

4.3.4 Network resource prioritisation

A block producer with significant stake could try to conduct a denial of service attack by holding
back a large number of blocks or endorsement reports and then releasing them all at once. This
is a particular concern for input blocks and endorsement reports because these are created with
relatively high frequency. This would lead to a situation where there may be more blocks or
reports available to download than can all be downloaded at once in the short term. It also
provides an opportunity to choose what to download, or in what order. Most legitimate blocks
and reports will have recent slot numbers, while those blocks and reports in the flood will have
mostly older slot numbers. Nodes therefore must always choose the recent blocks and reports
if available, and only choose older ones if they are the only ones available. The threshold for
‘recent’ here is a protocol parameter based on a reasonable upper bound on the typical time it
takes for blocks and reports to be relayed across the network.

Additionally, when there are choices for what to download in limited bandwidth, ranking
blocks should be selected before other types of blocks and reports.

9The reason ranking blocks, or indeed Praos blocks, do not need active double signing protection is because they
are part of chains, and the way chains are selected naturally provides DoS protection. Nodes only download and
adopt chains that are better than their own current chain. Two chains of equal length ending in two different blocks
signed by the same peer are not better than each other in the chain ordering, so nodes will select the first one they see
and then not select the second.
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4.3.5 Ledger state lags behind ranking blocks

As noted briefly in the overview, it is possible to adopt a chain even though not all of the
referenced endorsement and input blocks have yet been downloaded and verified. This has a
few consequences that need to be explained. It means a node’s state has a current chain but it
will in general only have a ledger state for a recent ranking block and not necessarily the latest
ranking block. It also means the mempool will be revalidated against the last ranking block for
which we have a ledger state, rather than the latest ranking block.

A node in this ‘not fully caught up’ state should prioritise downloading all the missing
endorsement and input blocks to try to catch up, because there are certain activities it cannot
participate in when not caught up. Nodes need the ledger state for a ranking block to be able to
validate input blocks that reference that ranking block. Thus nodes that are not fully caught up
cannot create endorsement reports for new input blocks that reference a more recent ranking
block. Similarly, such a node that is elected to create an endorsement block may have to pass up
many input blocks if it cannot validate them. And of course blockchain applications want to get
the content of blocks, which means getting access to the input blocks.

4.3.6 Pessimistic mode

Under extreme conditions when participation drops and the remaining active block producers
represent too small a fraction of stake, there may be too few block producers creating endorse-
ment reports to be able to make valid endorsement certificates, and thus progress would stall.
To degrade gracefully in this situation and preserve liveness, the Ouroboros Leios switches to
behave much like Ouroboros Praos, which maintains liveness even with low stake participation.

The way this works is that when a node is elected to create a ranking block, it evaluates a
predicate on the recent chain which then determines if the protocol should be in ‘optimistic’ or
’pessimistic’ mode. The predicate is based on the number of input blocks on the chain recently
compared to the range that would be expected. In optimistic mode, things proceed as described
previously. In pessimistic mode, the ranking block is created containing transactions directly,
without any endorsement blocks. This makes the block much like a Praos block.

4.3.7 The time slot of a transaction

Cardano transactions have a validity interval expressed in time slots. This means that transac-
tions may only be included onto the chain after some time slot, and before another. This validity
interval is the basis for the notion of time in Plutus scripts.

In Ouroboros Praos the interpretation of the time slot is the slot of the block in which the
transaction is included. In Ouroboros Leios the situation is less clear and there are multiple
options with different trade-offs. Further analysis is needed to decide on the best option.

One option is to declare that the interpretation of a transaction’s time slot is the slot of the
input block in which the transaction is included. This would mean that a transaction can be
included into an input block just before the transaction’s deadline, but it then takes some further
time before the input block is referenced in an endorsement block that is referenced in a ranking
block. This is in some sense reasonable: the transaction was submitted and made it to a block
producer on time, it is simply that the process of building the chain takes some time afterwards
to finish assembling everything. An advantage of this is that it is simple to implement: the time
interval check can be performed along with all the other checks when transactions within an
input block are validated. A downside of this choice is that to be confident that a transaction
has not arrived by a deadline would involve waiting for the maximum time that input blocks
are permitted to be included into ranking blocks. Otherwise it is in principle possible that a
transaction could have been included in an input block, but that input block was delayed or
ignored by some block producers and ends up being included very late. How reasonable this
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is depends on how long input blocks are allowed to hang around before being included into
a ranking block, which in turn is a protocol parameter that needs further analysis to properly
calibrate. Furthermore, this option would mean that transactions appearing in the final chain
do not necessarily appear in time slot order: again because input blocks can be delayed and
included late.

Another option is to declare that the interpretation of the time slot is the slot of the ranking
block in which the transaction is included. This would have the advantage that it is easy to
know when a transaction has not arrived by a deadline, as that would just involve waiting for
the first ranking block after a deadline. It would also mean that transactions would appear in
time slot order in the final ledger, since every transaction indirectly referenced by a ranking
block would be given the time slot of that ranking block. There are a number of downsides
too. There is the danger of transactions being included into input blocks that later have to be
ignored because they fall outside of their validity interval, and unless carefully managed this
could create a denial of service opportunity. It complicates the ledger checks since it means
some checks have to be split and performed at different phases in the algorithm. It also means
that there is greater uncertainty with submitting transactions before their deadline and getting
them included reliably: delays in the processing of endorsement or ranking blocks could mean
that the transaction misses its deadline, and this is outside the control of the transaction author.

4.4 Algorithm commentary

4.4.1 Fast fork switching

One of the motivations for the endorsement certificates scheme in Ouroboros Leios is to address
a tricky mismatch between theory and reality in the old Ouroboros Praos design that would
have become even worse in Ouroboros Leios. The theory and security analysis for Ouroboros
Praos relies on the assumption that chains ‘diffuse’ within ∆ time slots (5s on Cardano). This
is something that the real implementation can do for single blocks and for short forks of a few
blocks. It is obvious however that the time to switch fork is at least proportional to the length
of the fork, and at some length that will grow longer than ∆ time slots. This issue is not a
significant problem in Cardano today with Praos, in part because blocks are not very large. It
would however become a big problem in Leios because it is designed to have a lot more data
and scripts on the chain and so the cost of validating all the data referenced by each ranking
block would be that much higher. This would really violate the Praos assumption that chains
can be diffused in ∆ time, including switching forks. It could be violated for even fairly short
forks.

The endorsement certificates provide a way to switch forks on the ranking block chain with
comparatively little data needing to be download and relatively little validation CPU work
being needed. This restores the diffusion ∆ time assumption.

The ranking block payload is just the references to endorsement blocks, and the endorsement
certificates. These certificates are not tiny, but are not too big. The ranking blocks can be adopted
after verifying the endorsement certificates but without having to yet download or verify all the
endorsement or input blocks.

4.4.2 Lighter chain following

The endorsement certificates also enable a novel feature for nodes that do not produce blocks,
such as relays and end user nodes. It allows them to catch up and follow the chain without
having to execute smart contracts and verify transaction signatures. They can reconstruct the
ledger state for the chain they are following by applying blocks, but in doing so they can skip the
verification of the execution of scripts and the verification of transaction signatures. They can
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skip these checks because the endorsement certificate says that nodes representing a majority of
stake have already verified the scripts execute as expected.

It is worth noting that in Cardano script execution does not affect the ‘result’ of a transaction
– since that is already provided in the transaction outputs – it just affects whether the transaction
is valid. If the transaction is known to be valid then the resulting ledger state can be computed
without executing the scripts. The same is true for signatures on transactions.

The result of this is that it would be possible to follow the chain with less CPU resources
than otherwise. The chain data is still needed however. Though in principle the transaction
witnesses do not need to be downloaded.

4.4.3 Lighter relays

In Ouroboros Praos the resource cost of operating a relay is essentially identical to the resource
cost of operating a block producing node. The block producing node does do some extra work,
but it is relatively minor.

In Ouroboros Leios it is possible in principle to have relays that do less work than block
producing nodes. In particular, relays do not need to verify the content of input blocks that
they relay. For input blocks, endorsement blocks and endorsement reports, their numbers are
bounded provided the VRFs and signatures are checked, and the double signing checks are
performed. This is sufficient to prevent DoS.

Relays must still follow the chain, but they can use the technique described above to do so
relatively cheaply. Relays will still need the memory and disk space to hold the ledger state, and
the network bandwidth to serve all their upstream and downstream peers, but should not need
as much CPU processing power as block producing nodes.

4.4.4 Private VRF-based schedules

The right to create the various objects (input blocks, endorsement blocks, endorsement reports
and ranking blocks) are all based on VRFs (verifiable random functions). This is the same as
the private leader schedule to create ordinary blocks in Ouroboros Praos. The only difference is
that there are now four such schedules – and crucially – each one is independent of the other.
Each block producing node can produce any of the four different objects and takes part in the
corresponding schedule.

Each schedule works in the same way, based on a VRF, and weighted by the delegated stake
of the block producing node. The schedules for the four different all have different thresholds,
tuned to produce leaders at different (average) rates. For example input blocks are made very
frequently, while ranking blocks would be made at much the same rate as Praos blocks are made
now.

4.4.5 Lower variance in block producer rewards

Ouroboros Leios involves a lot more on-chain objects per epoch than in Ouroboros Praos and
thus many more opportunities for participation. The rewards for participation will be similarly
spread out over the different on-chain objects.

In the existing Cardano deployment, there are on average 21,600 blocks per epoch, and
many block producing nodes are on the boundary of producing 0 or 1 block per epoch. This
granularity creates high variance in the rewards each epoch. Under Ouroboros Leios, we would
expect a similar number of ranking blocks per epoch as now, but there could be 10x–20x or more
input blocks.

How rewards should best be spread out between the different objects is not yet settled,
but it is clear that there are far more objects contributing to rewards. This would somewhat

18



smooth out the epoch-to-epoch variance for block producers with low stake, without necessarily
affecting the expected (i.e. average) rewards.

4.4.6 Slot and height ‘battles’

In Ouroboros Praos, a so-called ‘height battle‘ occur whenever blocks are created concurrently,
meaning neither producer sees the other node’s block before making their own. This results in
block producers loosing out since only one of the blocks can end up in the final chain.

This situation looks quite different in Ouroboros Leios. There can still be height battles for
ranking blocks, but not for input and endorsement blocks, nor for endorsement reports. Of
course input blocks are intended to be created concurrently. They can all be gathered up and later
included into the ranking chain. The same applies to endorsement blocks.

The situation for ranking blocks is that while battles will still occur, they should not be too
frequent. In Praos, the only way to scale throughput – bigger blocks – also makes height battles
more frequent. By contrast in Leios, the size of ranking blocks is fixed even as throughput is
scaled up, so the typical time to relay a ranking block should remain fixed and relatively low.
This should keep the frequency of ranking block height battles fixed.

4.4.7 Minimal incentives to be closer/faster

Geographic decentralisation is an important component of network decentralisation. The
existing Cardano design tries to avoid incentives towards geographic centralisation. This means
trying to avoid rewarding block producers for being faster, since the main way to be faster is to
be physically closer. This is due to the fact that network latency is a major component of the
time it takes for blocks to be relayed around the network. This is a feature that is preserved in
Ouroboros Leios.

For ranking blocks, ties are broken deterministically using a fair (uniformly random) VRF.
For input blocks and endorsement blocks, there is a minimum time before these objects are
allowed to be referenced and this time is set so that there is adequate time to relay blocks across
the network. Similarly, endorsement reports are not used in a ranking block until some time
later.

The effect should be that there is an incentive to not be very slow, but no incentive to use
especially high spec hardware or move physically closer to other block producers. The ‘adequate’
time to relay blocks across the network will need to be set based on the minimum hardware
requirements, as well as the known network latencies. This is not expected to be a tight bound.

4.5 Serialisation of transactions in the ledger

There is a well defined overall order of transactions in the Leios blockchain. As discussed in
Section 3.2, this is important to be able to provide a straightforward interpretation of the ledger.

The ranking blocks provide the overall order. Each ranking block (indirectly via endorsement
blocks) references a set of input blocks. The input blocks referenced (indirectly) from a ranking
block are ordered by their slot number. Note therefore that it does not matter which endorsement
block referenced which input block (or if several did): all the input blocks referenced by all the
endorsement blocks in a ranking block are first considered as a set, and then ordered by the slot
number of the input blocks. There will often be ties due to multiple input blocks being created
in the same slot, and these ties are resolved by a VRF10. In the highly unlikely11 event of any ties
remaining, the order is a free choice by the author of the ranking block or endorsement block.

10Note that this is a independent VRF from the input block leader VRF, so the tie breaking is uniformly random.
11The VRFs used in Cardano have a 256bit output, so the chances of a collision are tiny.
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Note that this scheme does not guarantee that input blocks will appear in the ledger in the
order of their slot number, since it is possible for an input block that is created earlier to end up
in a later ranking block.

4.6 Requirements on the ledger layer

Ouroboros Leios imposes new constraints on the ledger layer. This is a direct consequence of
the new concurrency within the blockchain structure. Recall from Figure 5 that the concurrent
structure has both ‘fan out’ and ‘fan in’ in the data dependencies between blocks. It has ’fan out’
in the sense that many input blocks depend on an earlier ranking block. This is easy to handle
using existing ledger functionality: each input block is validated independently in a common
initial ledger state. It has ’fan in’ in the sense that each ranking block depends (indirectly) on
many input blocks. This is where a new ledger operation is required: to assemble the ledger
state of a ranking block, based on the sequence of validated input blocks that the ranking block
(indirectly) references.

Intuitively what this operation needs to do is – starting with the ledger state of the previous
ranking block – to run through all of the transactions in the ranking block in order and to
perform some but not all of the normal ledger checks. Specifically, it is not necessary to recheck
things that do not depend on the ledger state, which thus cannot be invalidated by a change in
the ledger state. As a simple example, the validity of transaction signatures do not change if
the ledger state changes. Any transactions that are found to be invalid based on these checks
are interpreted as if those transactions were absent from the ledger. This will occur whenever
transactions from independent input blocks turn out to conflict with each other: for example
if they spend the same inputs or both withdraw funds from the same reward account. The
resolution is that the first transaction wins and subsequent ones are ignored. The later ones still
take up space in the input blocks, but they are not considered to be part of the final ledger.

It is very important that this ‘reassembly’ operation is not too expensive: most of the
validation work needs to be done when input blocks are validated independently and not
when they are reassembled into a ranking block. In particular it is important that scripts do
not need to be re-executed during reassembly. Intuitively we expect it to be valid to skip script
execution because the ledger has been designed with great care to ensure that script execution is
deterministic. This means that when a transaction is checked in a different ledger state, either
the transaction is invalid (e.g. due to missing inputs) or if it is valid the script results will always
be identical. If the script result is always identical then the script execution does not need to be
repeated.

Of course intuition is not sufficient. The ‘determinism’ property that would guarantee the
correctness of this reassembly operation needs to be formalised and the ledger needs to be
proved or otherwise carefully tested to ensure that it satisfies this property.

Preliminary analysis suggests that the ‘pointer address’ feature does not satisfy this deter-
minism property, and the feature will need to be removed in order to support Leios. The pointer
address feature was included in Shelley and was intended to allow for shorter addresses, but
the feature has proved hard to use by wallets and has thus seen very little use. It is thus hoped
that its removal will not be too painful.

4.7 Requirements on the network layer

The Cardano network layer will need to be extended to support Ouroboros Leios, but the
fundamental architecture of the network layer will remain the same. The specific set of ‘mini
protocols’ used to support the consensus algorithm will need to be extended, but for example
the way in which peers manager their connections with each other in the peer-to-peer network
will remain the same.
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In particular, in Ouroboros Leios there are several new types of objects that need to be
relayed around the network: input blocks, endorsement blocks and endorsement reports.
Fortunately, the way these need to be transmitted all follow an existing pattern: that of relaying
of transactions, using intermediate buffers (i.e. the mempool). The most obvious design therefore
is to have three new mini-protocols for relaying the three new kinds of object, each with
corresponding buffers. One difference between relaying transactions and the blocks and reports,
is that the number of valid blocks and reports is bounded (statistically) by their VRF-based
leader schedules, whereas there is no inherent bound on the demand for submitting transactions.

The chain synchronisation and block fetch protocols will still be used, but just for ranking
blocks. All the other blocks follow a relaying style.

For catching up on the chain it will also be necessary to be able to fetch the other block
types: input blocks and endorsement blocks. The block fetch protocol will need to be suitably
extended.

Due to the fact that Leios should be able to use a much higher fraction of available network
resources, it may be necessary to introduce more precise control over prioritisation of different
network transmissions: between different block types, and between different peers.

5 Development strategy

Implementing Ouroboros Leios within Cardano will be a substantial undertaking and will need
to be approached carefully. To meet the performance goals, while maintaining or improving the
security and general quality will likely involve a multi-year research and development effort.

Overall, the development strategy will be to do a lot of careful preparation, prototyping,
analysis and formalisation, before trying to integrate anything into the existing codebase. This
strategy will maximise the chances of success and minimise the likelihood of problems occurring
and causing delays in the later implementation and integration stages.

Here are some of the major steps involved

• The Ouroboros Leios research design must be completed, including the security analysis,
published and peer reviewed.

• The various protocol parameters must be analysed based on the security results and
calibrated. This may involve further design work if some parameters pose practical
difficulties.

• The Leios algorithm needs to be described in a suitable computer science formal language.
This is different from the descriptions used in academic cryptography papers for security
analysis. The purpose is to give a precise description of the functional behaviour, to
help communicate the design to the engineering team, and later to help with testing the
behaviour.

• Performance is crucial for Ouroboros Leios and so much more performance prototyping
and analysis will need to be done for Leios than for previous Ouroboros designs. This
is to ensure that the performance characteristics are properly understood and to provide
a degree of modularity in the performance of the design and implementation. Perfor-
mance modularity means that it should be possible to give performance requirements
for components of the system which – if met – will mean that the overall system meets
its performance requirements. This is crucial to find and fix performance problems early,
rather than only discovering once system level benchmarks are performed and then having
difficulties in identifying which component or combination of components are the cause.

• A detailed prototype implementation will be important to be confident that all the de-
tails of the design are included, understood and that they work together and achieve
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the goals. This prototype should be able to run in simulation and check some of the dy-
namic behaviour such as resource use, resource contention and some of the performance
requirements.

• Once a full prototype of the design has been made and validated, there will need to
be detailed planning for how to adapt the existing Cardano implementation to support
Ouroboros Leios, plus how to smoothly manage a hard fork from Ouroboros Praos to
Leios.

• In the ledger layer, there will be a lot of formalisation work to do to ensure that the ledger
can correctly support the new operations.

All of this is needed before the implementation work starts, which itself will of course take time.
The implementation phase is also when the property-based tests and component-level bench-
marks are developed, based on previously specified properties and performance requirements.

There will need to be an extended testnet phase to enable collaboration with the authors
of the many Cardano tools and applications, to support them with the upgrade from Praos to
Leios.

6 Dependencies and relation to other features

A full scale implementation of Ouroboros Leios in Cardano would depend on a few other
features.

6.1 On disk storage of ledger state

There is an ongoing project to transition the Cardano node’s ledger state from being fully in
memory to being stored mostly on disk. This is necessary to scale to larger ledger states, such
as more UTxOs, more users, more scripts stored in the UTxO etc. It will also reduce the RAM
requirements for nodes considerably once fully implemented.

The initial implementation of this feature uses a medium performance on-disk backend, that
is suitable for the existing level of throughput on Cardano. A high performance backend is
being planned. A suitably adapted variant of this will be necessary for the high throughput
requirements of Ouroboros Leios.

Note that a local SSD will become part of the minimum requirements for the node12, but the
RAM requirements should become relatively modest.

6.2 Ouroboros Genesis

Ouroboros Genesis is a modular feature that enables nodes to safely bootstrap the blockchain
from Genesis with minimal trust requirements. This feature is in development to allow the IOG
relays to finally be turned off, which along with the peer-to-peer deployment, will complete the
decentralisation of the physical network.

Just as Ouroboros Praos+Genesis is a valid combination, Ouroboros Leios+Genesis makes
perfect sense too and provides the same benefits. Thus in some sense Leios and Genesis are
independent features. In practice Genesis will be deployed by the time that Leios is available
and so it would be a regression if the Genesis feature were not included.

12This is the case for all nodes, and thus also full-node wallets.
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6.3 Preparations in the ledger

The existing Cardano ledger is well placed to fit the requirements of Ouroboros Leios, but some
preparation work will be required. In addition to the new serialisation operations, the existing
ledger rules must satisfy the determinism property that we believe is necessary. The determinism
property also needs to be formalised and used to prove that the reassembly operation is correct.

In particular the pointer address feature is believed not to satisfy this property, and the
feature will need to be removed. The remaining ledger rules will need to be checked to verify
that they do satisfy the determinism property.

7 Future directions

It is hard to anticipate directions for future research and development, but there are a some
issues that are already sufficiently clear that they are worth a mention.

7.1 Decreased latency

The Ouroboros Leios design trades off increased latency for increased throughput. In particular
this means the latency of transactions being included into the chain, and also the latency
between transactions (in different input blocks) that can depend on each other. One topic of
research is to investigate changes to the Leios design that would reduce the minimum latency
between dependent transactions. In particular, one promising idea is that instead of input
blocks referencing a previous ranking block as the context for validation, they could instead
use a ‘speculative’ ledger state by referencing a ranking block and an endorsement block. The
referenced endorsement block should be one that already has enough reports to construct an
endorsement certificate, which ensures that it is sufficiently available to all participants. The
meaning of the ledger state is then the ledger state of the ranking block, extended with the
ledger state formed from the serialisation of all the input blocks in the endorsement block. Since
endorsement blocks are created more frequently than ranking blocks, this should reduce the
overall latency between dependent transactions.

7.2 Horizontal scalability

The Ouroboros Leios design provides what is classically called ‘vertical scalability’. What this
notion of scalability means is that as one increases the computational and network resources
of individual nodes, the throughput can increase correspondingly. For example, classically
one would describe database servers or web servers as vertically scalable if their throughput
increases when run on ever ‘bigger’ computers: more cores, faster cores and faster I/O systems.
In the Cardano context this would mean increasing the minimum system requirements, e.g. with
more CPU cores or higher network bandwidth, and then being able to use those resources to
increase throughput, by increasing the frequency of input blocks, or the size of input blocks.

The current Leios design does not however provide ‘horizontal scalability’. This notion of
scalability means that as one increases the number of computers running the system, that the
throughput can increase. For example a cluster of web servers or database servers would be
described as horizontally scalable if the throughput of the cluster increases as more computers
are added to the cluster.

One direction of future research is to see if variations or extensions on the Leios design
could provide a degree of horizontal scalability. There are some indications that this may be
possible. For example, if instead of all block producers validating all input blocks, they were
just to validate the input blocks that they need to report on, and if the mechanism for reporting
would shard input blocks around different reporters, then each reporter would only need to
look at a fraction of blocks. This would allow increasing the total number of input blocks. This
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scheme would also have the positive benefit that larger stake holders would be expected to
validate more blocks than small stake holders. This is fair in the sense that bigger stake holders
would need to dedicate more resources than smaller stake holders, but correspondingly bigger
stake holders can expect higher rewards.

There would be other aspects of the design that would also need to be revised to be achieve a
horizontally scalable design. In particular some mechanism would need to be found for handling
transactions on the submission side so that not all nodes need to validate all transactions.

8 The Cardano mainnet: how fast is too fast?

If Ouroboros Leios can be implemented successfully and it is deployed on the Cardano mainnet
then the community will face a question it has not had to face before: how to balance the
trade-off between system performance and the resource costs of participating. Higher system
performance allows more use of the system, but higher resource costs could put participation
beyond the means of many ordinary users. Put simply: the system could be too fast (and too
resource hungry) for most people to want to use it.

In a perfect world it would be possible to have high throughput and low resource use
for participants, but in the real world there is a trade-off: increased throughput comes with
increased resource use. Indeed the whole thrust of the Leios design approach is to more fully
utilise available resources as a means to increase throughput.

For example, if the mainnet script execution budget were to be set to be a substantial fraction
of 4 cores of a typical x86 server, then correspondingly the minimum hardware requirements
for all validating nodes would need to be a 4-core x86 chip (or equivalent power). This would
necessarily exclude people running block producers or relays on their Raspberry Pis. More
importantly it would make full-node wallets effectively impractical for most users.

The Cardano community is not the only one to have faced this question. The same topic
arose in Bitcoin, albeit at lower levels of performance. The Bitcoin community debated the
merits of large vs small blocks. One of the arguments made in favour of small blocks was “to
give end users the easy option to run a node and therefore have a more decentralized system”13.

It is worth briefly reviewing what increasing the minimum resource requirements might
look like, and what the consequences would be and what mitigation might be possible.

Suppose for the sake of argument that the system could be be run successfully at a rate of 5
input blocks per second, with each input block being 100kB.

Disk space The example configuration gives a data rate of 500kB/s. At this rate, the disk
storage for the chain would grow at around 41 GB/day or 14.7 TB/year.

This is plainly out of the realm of practicality for home users to store the entire chain. Multi-
terabyte hard drives are not cheap, and even large desktop computers can only hold a few hard
drives.

Network bandwidth Network bandwidth is commonly measured in megabits per second, not
bytes per second. An application level bandwidth of 500kB/s has various protocol overheads,
so at the low level network will correspond to roughly 5 Mbit/s. This would be a substantial
fraction of most home users broadband connections, and for many users would put them over
usage caps.

Memory For this analysis we will assume that the current design to store the ledger state on
disk will be completed. Main memory will be required for indexes and bloom filters for the large

13Quoting Till Musshoff in The Bitcoin Block Size Wars Explained
https://www.bitrawr.com/bitcoin-block-size-debate-explained
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on-disk tables such as the UTxO. Initial estimates suggest that a UTxO of 100 million entries
(roughly the size of bitcoin) would only need several hundred megabytes of memory for indexes
and bloom filters. The current design for on-disk storage involves maintaining the differences in
the on-disk tables in memory for the last K blocks, roughly 12 hours. This is acceptable for the
current Cardano data rates. At 500kB/s however it would need a lot more memory. A rough
calculation is that 500 kB could cover around 1000 small transactions, each with two UTxO
inputs and outputs, which given the memory representation of differences could need as much
as 8 GB for 12 hours worth of differences. This suggests that further design changes might be
necessary to keep even more of the state on disk.

CPU resources The CPU resources needed will depend directly on the budget that is set
for script execution. In principle it should be possible to push this high enough to be able to
saturate several CPU cores. Then the question is simply: what minimum system requirements
are acceptable.

It is worth noting, as discussed in Section 4.4.2, that the Leios design does allow non-block-
producer nodes to follow the chain without having to validate the contents of input blocks.
So the CPU resource requirements for relays and end user nodes can be lower than for block
producing nodes.

8.1 Mitigation

It is clear that in a very high throughput configuration that Ouroboros Leios would have resource
requirements that are too high for most end users, at least based on the current architecture of
full node wallets and storing the whole chain.

If such a high throughput configuration is desired, it may be necessary for the vast majority
of users to switch to light wallets.

It would also almost certainly be necessary for most end user full nodes to not store the
whole chain history. The node itself does not need the full chain history (except currently when
migrating the format of on-disk ledger state snapshots), but some client applications do. For
example, recovering a BIP44 wallet from a seed either requires the whole chain history or an
index of all addresses that have ever been used on the chain. Additionally, some scheme would
need to be developed so that most relays also do not need to store the whole chain, but just
the recent chain. The whole chain needs to be kept somewhere of course and such a scheme
would need to be able to assist nodes to find where in the network the older parts of the chain
are available.

Syncing the chain could also take an impractically long time. It may be necessary to build
in a feature to take snapshots of the chain state in such a way that nodes can establish trust
in a snapshot and continue following the chain from there. Such a feature is currently being
prototyped, under the code name ‘Mithril’. It may be necessary for this to be a built-in feature to
allow a high performance configuration.

Each of these mitigations is a non-trivial feature in their own right. This needs to be taken
into account when planning for Ouroboros Leios integration, if a truly high performance
configuration is desired.
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