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Abstract

We model distributed proof generation for ZK-SNARKs-based blockchains
via discrete Markov chains. Two different types of proof construction models are
considered: those in which all the proofs to be built are independent (they can
be considered as leaves on the Merkle tree) and those in which the proofs are
located at all nodes of the Merkle tree, and hence form a partially ordered set.
Keywords: blockchain, Merkle tree, lumpable Markov chain, Stirling numbers,
coupon collector’s problem, classical occupancy distribution, Birkhoff duality

1 Introduction

The paper considers the problem of estimating the number of steps to build a complete
set of SNARK proofs in the Merkle tree for blockchains. In doing so, we consider two
different types of proof construction models: those in which all the proofs to be built
are independent (they can be considered as leaves on the Merkle tree) and those in
which the proofs are located at all nodes of the Merkle tree, and hence form a partially
ordered set. The first one obviously is much more simpler, and we partially solved it.

The article is organized in the next way. The Chapter 3 illustrate the lumping of
states technique for Markov chains on the sample of coupon collector’s problem. This
technique and this sample are used the further sections. Section 3 considers the problem
of the number of steps to construct a complete set of proofs that are leaves of the Merkle
tree. We proof that the model from Example 5 initially formulated as non-Markovian
is stochastically equivalent to the Markov chain from Example 4, and study its lumped
form from Example 6. The recurrent formulas for the expectation and variance of
the number of steps are received. We show that dependence of expectation on two
parameters the number of provers n and the number of leaves m can asymptotically



reduces to a function h of single parameter n/m and describe this function. Section
4 covers the construction of the entire Merkle tree. Moreover, it is convenient to
generalize the models from Sections 2 and 3 to the case of a partially ordered set.
This generalization leads to some useful ideas, such as a more appropriate probability
distribution on poset items. We are interested in the case of a complete Merkle tree
with 2¢ — 1 nodes. It is hardly possible to expect a complete analytical solution. The
corresponding numerical results and their analysis are supposed to be considered in
the expanded version of these theses.

This work was supported in part by the National Research Foundation of Ukraine
under Grant 2020.01/0351.

2 Preliminary models

The Stirling numbers of the second kind can be defined in the context of the Stanley’s
twelvefold way [Stall, 1.9]: S(m,n) = {"} is the number of partitions of the m
labeled elements into n non-empty nonlabelled blocks. Denote m := {1,2,...,m}.
Then the number of surjections m — n is n'{:f} It can be calculated as a sum of
multinomial coefficients ( " ) = ml,m—' using the forward difference operator A

mi,...,Mn cemp )

or the inclusion-exclusion principle:

n‘{:?} = ¥ (mh m 7mn) = A"0™ = Zn:(—w(:f) (n— )™

mi—+-+mp=m r=0
m;>1

Here we assume that Markov chains are discrete-time, stationary and with finite or
countable state-space S. We write elements of transition matrix in the form

pij =p(i,J) =P(X(n+1)=j | X(n)=i), 4jes
This a stochastic matrix with >, o pi; = 1.

Definition 1 ([KS76, §6.3]). Let p = (pss')s.ses be a stochastic matrix over a state-
space S. A surjection 7w : S — T is called a lumping map (and the corresponding
partition S =[], 7' (t) lumpable) if for any t' € T the sum ) Pss 18 locally
constant on s € 7 () for each t € T

s'er—1(t")

Proposition 1. Let (pss)sses be a stochastic matriz and ©: S — T a lumping map.
1. Then one can define a new stochastic matriz over a state-space T with entries
pg‘/ = Zs’éwfl(t’) Dss's S € W_l(t)'
2. Let v = (0r(s)t)ses, be the incidence matriz corresponding to the lumping map T,
teT

S
and v = (viv) "1t the transpose matriz, normalized to stochastic, then the lumped
k-fold transition matriz is

(upv)® = up*v. (1)



We describe a so called coupon collector model as a result of lumping construc-
tions. It is closely related to the our further models, in particular leads to the classical
occupancy distribution described via Stirling numbers of the second kind.

Example 1. Consider the asymmetric random walk on the n-dimensional hyperoctant

Z%, with nonzero transition probabilities p(a,a +¢;) = 1/n for each a € Z%, and basic

vectors ¢; = (0,...,0,1,0,...,0). Then nonzero entries of m-fold transition matrix are
—_—— —

i—1 n—i

p™(a,a+ h) :n_m(h " ), where hy > 0 and hy + -+ + h, = m.

1y--n

_ 0, ifa=0

Example 2. The type map conversion map (-) : Zso — {0,1}, a = <’ 1 “a=
1, ifa>0,

applied to each coordinate gets a lumping map Z%, — {0, 1}" for the previous Markov

chain. According to (1) for the obtained Markov chain on the hypercube {0, 1}" m-step
transition matrix p™ is the following: if p™(a, b) then a; < b; for all i; and

|
p™(a,b) =n"" Z (m1 m - > = ;—W{T}, where r = Z(bZ —a;), ifa#b.

mi+-+mnp=m i
m;>1

p"(a,a) = (Z ai/n>m.

7

Example 3 (Coupon collector’s problem). The projection of hypercube to the main
diagonal

{0,1}" = {0,1,...,n}, (a;)1<i<n — Zai

is a lumping map. Combining the states we get so called coupon collecting Markov
chain [LPW17, 2.2], where nonzero m-step transition probabilities are the following:

(ke k) = i—: Pk 7) = im<” - k)r!{m} _ M{m} @)

n T r nm r

where (n), =n(n —1)---(n —r+ 1) is the falling factorial.

There are n distinct coupons in the urn. A collector draw with replacement one
random coupon in a step. The number &, = £p™ of distinct coupons selected after m
steps has the classical occupancy distribution [O'N19]: P(¢,, = r) = p™(0, 7).

The expectation of number (' of steps to obtain exactly r distinct coupons is
described via harmonic numbers H, =1+1/2+--- 4+ 1/n:

E( =n(Hy — Hyr). (3)

3 Distributed generation of sets of proofs

Example 4. Suppose that there exist m > 0 nodes in a network called provers and
a finite set NV of proof-candidates for which they need to construct proofs. We model
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this situation as a Markov chain, where states are subsets of N’ C N of candidates
for which proofs are not yet constructed. On each step in the state N’ each prover
independently selects a single candidate from N’ and construct its proof, i.e. selection
is given by a function ¢ : m — N’ uniformly distributed among all functions m — N’.
For given selections the next state is obtained by removing all candidates proved in
this step. So nonzero transition probabilities described via number of surjections:

m

N/ Nl/ — N/ N/l ' .
p(N', ) =[N\ | {|N’\N”|

}-|N’|—m, N'CN', |IN~N'|<m. (4)

Example 5. To force provers to act independently, rules are modified in the following

way: Denote ord N the set of linear orderings of N i.e. bijections o : {1,2,...,|N|} =
N. (Note that |ord N| = |N|!.) Suppose that at the beginning each prover randomly
selects its own priority ordering o; € ord N, 1 < i < m (We assume a uniform dis-
tribution on ord N). After that the process becomes completely deterministic: In the
first step all provers select candidates according to the function ¢ : m — N given
by ¢(i) := o;(1). The next state in N’ = N ~ Im(g). There is a natural projec-
tion p¥, : ord(N) — ord(N’), which removes foreign elements from an ordering. And
provers can do the next step with priority orderings p¥, (o).

Proposition 2. The model from Example 5 is stochastically equivalent to the Markov
chain from Ezample /.

Proof. (Sketch.) Uniform distributions of ¢; imply 1) uniform distribution of the first
selection function g, and 2) uniform distributions of p¥,(c;), because the fiber of pY,
over each point has the same cardinality | ord N|/| ord N’| = |N|!/|N|!. O

Example 6. Note that the Markov chain from Example 4 admits a lumping map
N’ +— |N|. For each m,n > 0 and we obtain a Markov chain with states {0,1,...,n}.
Exactly from definition one can see that for fixed m and for n’ < n, one Markov chain
is included in other. So one can consider the colimit (union) of these chains for all n.
So for each m € Z~ we obtain a Markov chain, where states are nonnegative integers
and the only nonzero elements of transition matrix are the following

p(0,0) =1,
P(nyn—T)Zi(n)T!{m}:@{m}, n>0 1<r<m. (5)

nm\r r nm \r

The formula coincides with the classical occupancy distribution from Example 3.
So if we start from the state ™ = n, then the evolution on the kth step is defined
via kth power of transition matrix:

The absorbing state is 0. All trajectories are strictly decreasing and ;" = 0 for k > n.
The subject of our interest is the absorption time ™", a random variable which
measure the exact number of steps m provers needs to obtain all n proofs. l.e. 77" =

k+1iff € =0 and ™ #£ 0,



Taking into account the lower triangular form of our transition matrix we get re-
current and explicit formulas

P(Tmn = O) = 0Ono,

P( . k+1> min(m,n) P( o k) mlrirr:t,n) (n)r m P( I k) (6)
= — nn—r T = = T -

" r=1 g r=0 " g

P(r™=k+1) = Z Pnony ** " Pry_1ny Pny0

nE<--<ni<nog=n

N . . m) (7
— Z m{no_nl}"'{nk_l—nk}{nk}'

nE<--<ni<nog=n

Multiplying (6) by k‘ and taking a sum over k we get the recurrent formula for ¢th

moment:
min(n,m)

E(Tmn o 1)Z — Do E(Tmn—r)f.
r=1

In particular, this allows to calculate expectation and variance:

Proposition 3. Let m > 0. Then 7™° = 0 and for n >0

min(n,m) (n)r m
Er =1+ —{ }E'rm”r,
— nm \r

r=

min(n,m)
E(r™)? = -1+ 2E7™ + Y (. {m
r

m
r=1

Var 7™ = E(7™")? — (E7™")2.

L

Here we compare the values of E7™" as results of analytic calculation using Wol-
fram Mathematica (3 last digits in numerator) and of 10° random tests of model from
Example 5 (3 last digits in denominator):

n\m | 10 20 30 40 50 [ 100 | 200 | 300
869 542 086 190 090 027 000 000
10 [ 21657 | 1.7872 [ 1.37%0 [ 1.141%0 [ 10520 [ 1.00%2 | 1.00%0 | 1.00%00

931 007 865 422 082 346 070 000
20 | 34Tq [ 23400 [ 200 | 196 [ 18380 | TS0 [ 1,003 [ 1000
30 | 4.6750 [ 3.0420 | 248212 12,0520 2,002 [ 1,662 | 1.0350 | 1.0010

932 296
575 690 143 552 500 687 710 995

606 784 580 450 236 990 171 091
50 | 6.80%08 7420181 32780 129815019 68256 11,9990 [ 1,601 [ 1.11%1

720 755 624 879 029 527 005 585
100 | 121688 7.065 | 5.248 | 436,00 3.08021 [ 2.90 88 | 2,00 [ 19922
200 | 2247, [ 123728 [ 0.0058 [ 713 07 6.06% | 4005 | 2092 [ 2,056
300 | 32.65500 [ 17.60100 [ 12,5020 [ 9.9808% 82705 502111 33015 [2.99%%

Conjecture 1. e There exists a monotone increasing function h : Ryy — Ryg
given by the limit
h(z):= lim E7™"
m,n— oo
n/m—z

b}



e h(z) N1 when z \,0;
e 1(1) =3 (for example E7770 ~ 3 —1.1-1078);
e h(z)/z 1 and h(z) = z + ;log z 4+ O(1) when z — +00;

Proof. We can proof only part of the above statements, other are results of numerical
experiments. 1. For fixed m,n € Z-( the function Z-y — R.g, a — E79" is
monotone increasing. 2. The expectation E7™" can be majorized by E (' form coupon
collector model:

Er™" B < (B + B 4+ B /m
= b(Hym — Hip1ym) + (0—=1)(Hp—1ym —Hp—2ym) + -+ + 2(Hom — Hyy)

bb 1 b
~log—— =~ b+ =log —. O
i (b—1)! b1 +2 o

The graph of h(z) for small = looks like a ladder. From other hand we can see
the asymptotic of h(z) for x — oco. On the figures bellow graphs of the functions
n/750 — E779" and n/50 — E 750" —n /50 —In(n/50)/2 give suitable approximations:

138
...... L o BRI il 124 i 1 1 -r—/_/"—;
4 £ g

o 5000 10000 15000 20000 25000

The behaviour of the variance Var 7™" is more complicated. Our numerical calcu-
lations allows to suppose that Var 7" < 1 if m > 10 and n/m < 10000.

Remark 1. Example 5 allows to obtain rough but very quick estimation of proof con-
struction success. Note that & > n — r implies that #{o;(j)|1 <i<m,1 < j <r}.

So calculating probabilities we have P(&™ > n —r) < (}) <%> . In particular,

P(rm > k) =P >1)<n(l—k/n)" k/n%«lne_k%.

4 Distributed generation of Merkle trees

Our practical task is to generate proofs for nodes of Merkle tree. The nodes form a
partially ordered set (poset) whose Hasse diagram is the tree itself.

Some basic facts about posets can be found in [Stall, ch.3]. Let P be a poset. A
subset I C P is called a down-set (resp. wup-set) if for each z € I and y € P with
y < z (resp. y > x) we have y € I. Note that down-sets in P are up-sets in the



opposite poset P°P and vice versa. And I C P is a down-set iff its complement P ~ [
is an up-set. The set of up-sets in P form a distributive lattice ordered by inclusion
(this statement is a part of Birkhoff’s representation theorem). Denote min P the set
of minimal elements in P.

A Merkle tree M, with 2° — 1 nodes as a poset consists of words of length < /¢ in
alphabet of two letters, say {0,1}; and w > w’ iff w' start with w. So the empty word
corresponds to the greatest element, the root. The number u, of up-sets in this poset
satisfies the recurrent relation u,; = u? + 1 (the sequence A003095).

One can generalise Makov chains from Examples 1,2 to the case of poset N. In
particular, for poset-guided analog of coupon collector Markov chain: a graph (not
mentioning loops) is the Hasse diagram for the lattice of down-sets in N. The further
lumping like in Example 3 exists only for special posets.

Let N be a poset. We consider a Markov chain, where states are up-sets in N.
Non-zero elements of transition matrix are

p(N',N") = |N"~~ N"|'- S(m,|N" <~ N”|) - | min N'| ™™,

where N’ \ min N’ C N” C N" and [N~ N”| < m. If N is a discrete poset we obtain
a Markov chain from Example 4.

Note that very similar constructions around Birkhoff’s representation theorem de-
scribe shapes of cells of higher categories in [Bes19].
Remark 2. We can extend the model from Example 5 to the case of poset N. The only
modification is to define a linear ordering of N as a monotone bijections o : N = {1<
2 <. <|N|}.

The number of linear orderings of a Merkle tree: | ord(Mp1)| = |ord(Meq)]?( 2 )

20-1_1
2Z—k—l

=1 (2k+1_9 1 L=k
and [ord(My)| =TT (o 1) = @ = DY T2 - 12

In this more general situation Proposition 2 is broken if we use equiprobability
distributions. An analog of this proposition remains true if we consider a system of

agreed probability distributions in general different from uniform.
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