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Abstract

We model distributed proof generation for ZK-SNARKs-based blockchains
via discrete Markov chains. Two different types of proof construction models are
considered: those in which all the proofs to be built are independent (they can
be considered as leaves on the Merkle tree) and those in which the proofs are
located at all nodes of the Merkle tree, and hence form a partially ordered set.
Keywords: blockchain, Merkle tree, lumpable Markov chain, Stirling numbers,
coupon collector’s problem, classical occupancy distribution, Birkhoff duality

1 Introduction

The paper considers the problem of estimating the number of steps to build a complete
set of SNARK proofs in the Merkle tree for blockchains. In doing so, we consider two
different types of proof construction models: those in which all the proofs to be built
are independent (they can be considered as leaves on the Merkle tree) and those in
which the proofs are located at all nodes of the Merkle tree, and hence form a partially
ordered set. The first one obviously is much more simpler, and we partially solved it.

The article is organized in the next way. The Chapter 3 illustrate the lumping of
states technique for Markov chains on the sample of coupon collector’s problem. This
technique and this sample are used the further sections. Section 3 considers the problem
of the number of steps to construct a complete set of proofs that are leaves of the Merkle
tree. We proof that the model from Example 5 initially formulated as non-Markovian
is stochastically equivalent to the Markov chain from Example 4, and study its lumped
form from Example 6. The recurrent formulas for the expectation and variance of
the number of steps are received. We show that dependence of expectation on two
parameters the number of provers n and the number of leaves m can asymptotically

1



reduces to a function h of single parameter n/m and describe this function. Section
4 covers the construction of the entire Merkle tree. Moreover, it is convenient to
generalize the models from Sections 2 and 3 to the case of a partially ordered set.
This generalization leads to some useful ideas, such as a more appropriate probability
distribution on poset items. We are interested in the case of a complete Merkle tree
with 2` − 1 nodes. It is hardly possible to expect a complete analytical solution. The
corresponding numerical results and their analysis are supposed to be considered in
the expanded version of these theses.

This work was supported in part by the National Research Foundation of Ukraine
under Grant 2020.01/0351.

2 Preliminary models

The Stirling numbers of the second kind can be defined in the context of the Stanley’s
twelvefold way [Sta11, 1.9]: S(m,n) =

{
m
n

}
is the number of partitions of the m

labeled elements into n non-empty nonlabelled blocks. Denote m := {1, 2, . . . ,m}.
Then the number of surjections m � n is n!

{
m
n

}
. It can be calculated as a sum of

multinomial coefficients
(

m
m1,...,mn

)
:= m!

m1!···mn!
, using the forward difference operator ∆

or the inclusion-exclusion principle:

n!

{
m

n

}
=

∑
m1+···+mn=m

mi>1

(
m

m1, . . . ,mn

)
= ∆n0m =

n∑
r=0

(−1)r
(
n

r

)
(n− r)m.

Here we assume that Markov chains are discrete-time, stationary and with finite or
countable state-space S. We write elements of transition matrix in the form

pij = p(i, j) = P(X(n+ 1) = j | X(n) = i), i, j ∈ S.

This a stochastic matrix with
∑

j∈S pij = 1.

Definition 1 ([KS76, §6.3]). Let p = (pss′)s,s′∈S be a stochastic matrix over a state-
space S. A surjection π : S � T is called a lumping map (and the corresponding
partition S =

∐
t∈T π

−1(t) lumpable) if for any t′ ∈ T the sum
∑

s′∈π−1(t′) pss′ is locally

constant on s ∈ π−1(t) for each t ∈ T .

Proposition 1. Let (pss′)s,s′∈S be a stochastic matrix and π : S � T a lumping map.

1. Then one can define a new stochastic matrix over a state-space T with entries
pπtt′ :=

∑
s′∈π−1(t′) pss′, s ∈ π−1(t).

2. Let v = (δπ(s),t)s∈S,
t∈T

be the incidence matrix corresponding to the lumping map π,

and u = (vtv)−1vt the transpose matrix, normalized to stochastic, then the lumped
k-fold transition matrix is

(upv)k = upkv. (1)

2



We describe a so called coupon collector model as a result of lumping construc-
tions. It is closely related to the our further models, in particular leads to the classical
occupancy distribution described via Stirling numbers of the second kind.

Example 1. Consider the asymmetric random walk on the n-dimensional hyperoctant
Zn>0 with nonzero transition probabilities p(a, a+ ei) = 1/n for each a ∈ Zn>0 and basic
vectors ei = (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

). Then nonzero entries of m-fold transition matrix are

pm(a, a+ h) = n−m
(

m
h1,...,hn

)
, where h1 > 0 and h1 + · · ·+ hn = m.

Example 2. The type map conversion map (-) : Z>0 → {0, 1}, a =

{
0, if a = 0,

1, if a > 0,

applied to each coordinate gets a lumping map Zn>0 → {0, 1}n for the previous Markov
chain. According to (1) for the obtained Markov chain on the hypercube {0, 1}n m-step
transition matrix pm is the following: if pm(a, b) then ai 6 bi for all i; and

pm(a, b) = n−m
∑

m1+···+mn=m
mi>1

(
m

m1, . . . ,mn

)
=

r!

nm

{
m

r

}
, where r =

∑
i

(bi − ai), if a 6= b.

pm(a, a) =
(∑

i

ai/n
)m
.

Example 3 (Coupon collector’s problem). The projection of hypercube to the main
diagonal

{0, 1}n → {0, 1, . . . , n}, (ai)16i6n 7→
∑
i

ai

is a lumping map. Combining the states we get so called coupon collecting Markov
chain [LPW17, 2.2], where nonzero m-step transition probabilities are the following:

pm(k, k) =
km

nm
, pm(k, k + r) =

1

nm

(
n− k
r

)
r!

{
m

r

}
=

(n− k)r
nm

{
m

r

}
, (2)

where (n)r = n(n− 1) · · · (n− r + 1) is the falling factorial.
There are n distinct coupons in the urn. A collector draw with replacement one

random coupon in a step. The number ξm = ξ0p
m of distinct coupons selected after m

steps has the classical occupancy distribution [O’N19]: P(ξm = r) = pm(0, r).
The expectation of number ζnr of steps to obtain exactly r distinct coupons is

described via harmonic numbers Hn = 1 + 1/2 + · · ·+ 1/n:

E ζnr = n(Hn −Hn−r). (3)

3 Distributed generation of sets of proofs

Example 4. Suppose that there exist m > 0 nodes in a network called provers and
a finite set N of proof-candidates for which they need to construct proofs. We model
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this situation as a Markov chain, where states are subsets of N ′ ⊆ N of candidates
for which proofs are not yet constructed. On each step in the state N ′ each prover
independently selects a single candidate from N ′ and construct its proof, i.e. selection
is given by a function g : m→ N ′ uniformly distributed among all functions m→ N ′.
For given selections the next state is obtained by removing all candidates proved in
this step. So nonzero transition probabilities described via number of surjections:

p(N ′, N ′′) = |N ′ rN ′′|! ·
{

m

|N ′ rN ′′|

}
· |N ′|−m, N ′′ ⊆ N ′, |N ′ rN ′′| 6 m. (4)

Example 5. To force provers to act independently, rules are modified in the following

way: Denote ordN the set of linear orderings of N i.e. bijections σ : {1, 2, . . . , |N |}
∼=−→

N . (Note that | ordN | = |N |!.) Suppose that at the beginning each prover randomly
selects its own priority ordering σi ∈ ordN , 1 6 i 6 m (We assume a uniform dis-
tribution on ordN). After that the process becomes completely deterministic: In the
first step all provers select candidates according to the function g : m → N given
by g(i) := σi(1). The next state in N ′ = N r Im(g). There is a natural projec-
tion ρNN ′ : ord(N) → ord(N ′), which removes foreign elements from an ordering. And
provers can do the next step with priority orderings ρNN ′(σi).

Proposition 2. The model from Example 5 is stochastically equivalent to the Markov
chain from Example 4.

Proof. (Sketch.) Uniform distributions of σi imply 1) uniform distribution of the first
selection function g, and 2) uniform distributions of ρNN ′(σi), because the fiber of ρNN ′
over each point has the same cardinality | ordN |/| ordN ′| = |N |!/|N ′|!.

Example 6. Note that the Markov chain from Example 4 admits a lumping map
N ′ 7→ |N |. For each m,n > 0 and we obtain a Markov chain with states {0, 1, . . . , n}.
Exactly from definition one can see that for fixed m and for n′ 6 n, one Markov chain
is included in other. So one can consider the colimit (union) of these chains for all n.
So for each m ∈ Z>0 we obtain a Markov chain, where states are nonnegative integers
and the only nonzero elements of transition matrix are the following

p(0, 0) = 1,

p(n, n− r) =
1

nm

(
n

r

)
r!

{
m

r

}
=

(n)r
nm

{
m

r

}
, n > 0, 1 6 r 6 m.

(5)

The formula coincides with the classical occupancy distribution from Example 3.
So if we start from the state ξmn0 ≡ n, then the evolution on the kth step is defined

via kth power of transition matrix:

ξmnk = ξmn0 pk.

The absorbing state is 0. All trajectories are strictly decreasing and ξmnk ≡ 0 for k > n.
The subject of our interest is the absorption time τmn, a random variable which

measure the exact number of steps m provers needs to obtain all n proofs. I.e. τmn =
k + 1 iff ξmnk+1 = 0 and ξmnk 6= 0.
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Taking into account the lower triangular form of our transition matrix we get re-
current and explicit formulas

P(τmn = 0) = δn0,

P(τmn=k+1) =

min(m,n)∑
r=1

pnn−r P(τmn−r = k) =

min(m,n)∑
r=0

(n)r
nm

{
m

r

}
P(τmn−r = k)

(6)

P(τmn=k+1) =
∑

nk<···<n1<n0=n

pn0n1 · · · pnk−1nk
pnk0

=
∑

nk<···<n1<n0=n

n!

(n0n1 · · ·nk)m

{
m

n0 − n1

}
· · ·
{

m

nk−1 − nk

}{
m

nk

}
.

(7)

Multiplying (6) by k` and taking a sum over k we get the recurrent formula for `th
moment:

E(τmn − 1)` =

min(n,m)∑
r=1

pmn−r E(τmn−r)`.

In particular, this allows to calculate expectation and variance:

Proposition 3. Let m > 0. Then τm0 ≡ 0 and for n > 0

E τmn = 1 +

min(n,m)∑
r=1

(n)r
nm

{
m

r

}
E τmn−r,

E(τmn)2 = −1 + 2 E τmn +

min(n,m)∑
r=1

(n)r
nm

{
m

r

}
E(τmn−r)2,

Var τmn = E(τmn)2 − (E τmn)2.

Here we compare the values of E τmn as results of analytic calculation using Wol-
fram Mathematica (3 last digits in numerator) and of 105 random tests of model from
Example 5 (3 last digits in denominator):

n\m 10 20 30 40 50 100 200 300
10 2.16869

787
1.78542

357
1.37086

051
1.14190

100
1.05090

099
1.00027

027
1.00000

000
1.00000

000

20 3.47931
927

2.34507
533

2.00865
842

1.96422
396

1.83582
516

1.11346
316

1.00070
055

1.00000
001

30 4.67850
932

3.04330
296

2.48512
367

2.05429
539

2.00238
236

1.66514
691

1.03364
183

1.00115
112

40 5.80575
489

3.76690
573

2.99443
496

2.59552
423

2.13500
559

1.97687
744

1.22719
433

1.01995
928

50 6.89606
594

4.20784
602

3.27580
637

2.98450
461

2.68236
375

1.99990
982

1.60171
019

1.11091
170

100 12.16720
615

7.06755
721

5.24624
792

4.36879
869

3.98029
051

2.90527
516

2.00005
003

1.99585
578

200 22.47230
252

12.37230
229

9.00099
246

7.13489
424

6.06816
896

4.00045
029

2.99159
165

2.05752
897

300 32.65910
976

17.60450
329

12.50050
043

9.98039
139

8.27088
058

5.02111
084

3.30483
400

2.99925
942

Conjecture 1. � There exists a monotone increasing function h : R>0 → R>0

given by the limit
h(z) := lim

m,n→∞
n/m→z

E τmn;
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� h(z)↘ 1 when z ↘ 0;

� h(1) = 3 (for example E τ 750 750 ≈ 3− 1.1 · 10−8);

� h(z)/z ↘ 1 and h(z) = z + 1
2

log z +O(1) when z → +∞;

Proof. We can proof only part of the above statements, other are results of numerical
experiments. 1. For fixed m,n ∈ Z>0 the function Z>0 → R>0, a 7→ E τaman is
monotone increasing. 2. The expectation E τmn can be majorized by E ζnr form coupon
collector model:

E τmbm − E τmm 6 (E ζbmm + E ζ(b−1)mm + · · ·+ E ζ2mm )/m

= b(Hbm −H(b−1)m) + (b−1)(H(b−1)m−H(b−2)m) + · · ·+ 2(H2m−Hm)

≈ log
bb

(b− 1)!
≈

b�1
b+

1

2
log

b

2π
.

The graph of h(x) for small x looks like a ladder. From other hand we can see
the asymptotic of h(x) for x → ∞. On the figures bellow graphs of the functions
n/750 7→ E τ 750n and n/50 7→ E τ 50n−n/50−ln(n/50)/2 give suitable approximations:

The behaviour of the variance Var τmn is more complicated. Our numerical calcu-
lations allows to suppose that Var τmn < 1 if m > 10 and n/m < 10000.

Remark 1. Example 5 allows to obtain rough but very quick estimation of proof con-
struction success. Note that ξmnk > n− r implies that #{σi(j)|1 6 i 6 m, 1 6 j 6 r}.
So calculating probabilities we have P(ξmnk > n− r) 6

(
n
`

) ( (r)k
(n)k

)m
. In particular,

P(τmn > k) = P(ξmnk > 1) 6 n (1− k/n)m ≈
k/n�1

ne−k
m
n .

4 Distributed generation of Merkle trees

Our practical task is to generate proofs for nodes of Merkle tree. The nodes form a
partially ordered set (poset) whose Hasse diagram is the tree itself.

Some basic facts about posets can be found in [Sta11, ch.3]. Let P be a poset. A
subset I ⊆ P is called a down-set (resp. up-set) if for each x ∈ I and y ∈ P with
y 6 x (resp. y > x) we have y ∈ I. Note that down-sets in P are up-sets in the
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opposite poset P op and vice versa. And I ⊆ P is a down-set iff its complement P r I
is an up-set. The set of up-sets in P form a distributive lattice ordered by inclusion
(this statement is a part of Birkhoff’s representation theorem). Denote minP the set
of minimal elements in P .

A Merkle tree M` with 2` − 1 nodes as a poset consists of words of length < ` in
alphabet of two letters, say {0, 1}; and w > w′ iff w′ start with w. So the empty word
corresponds to the greatest element, the root. The number u` of up-sets in this poset
satisfies the recurrent relation u`+1 = u2` + 1 (the sequence A003095).

One can generalise Makov chains from Examples 1,2 to the case of poset N . In
particular, for poset-guided analog of coupon collector Markov chain: a graph (not
mentioning loops) is the Hasse diagram for the lattice of down-sets in N . The further
lumping like in Example 3 exists only for special posets.

Let N be a poset. We consider a Markov chain, where states are up-sets in N .
Non-zero elements of transition matrix are

p(N ′, N ′′) = |N ′ rN ′′|! · S(m, |N ′ rN ′′|) · |minN ′|−m,
where N ′ r minN ′ ⊆ N ′′ ⊆ N ′ and |N ′ rN ′′| 6 m. If N is a discrete poset we obtain
a Markov chain from Example 4.

Note that very similar constructions around Birkhoff’s representation theorem de-
scribe shapes of cells of higher categories in [Bes19].

Remark 2. We can extend the model from Example 5 to the case of poset N . The only

modification is to define a linear ordering of N as a monotone bijections σ : N
∼=−→ {1 <

2 < · · · < |N |}.
The number of linear orderings of a Merkle tree: | ord(M`+1)| = | ord(M`+1)|2

(
2`−2

2`−1−1

)
and | ord(M`+1)| =

∏`−1
k=1

(
2k+1−2
2k−1

)2`−k−1

= (2` − 1)!/
∏`

k=2(2
k − 1)2

`−k
.

In this more general situation Proposition 2 is broken if we use equiprobability
distributions. An analog of this proposition remains true if we consider a system of
agreed probability distributions in general different from uniform.
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