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Abstract. SMT solvers can verify properties automatically and effi-
ciently, and they offer increasing flexibility on the ways those properties
can be described. But it is hard to predict how those ways of describing
the properties affect the computational cost of verifying them.
In this paper, we discuss what we learned while implementing and opti-
mising the static analysis for Marlowe, a domain specific language for self-
enforcing financial smart-contracts that can be deployed on a blockchain.

1 Introduction

Thanks to static analysis, we can automatically check beforehand whether any
payments promised by a Marlowe [12,13] contract can be fulfilled in every possi-
ble execution of the contract. If a Marlowe contract has passed the static analysis,
we will have a very high assurance that whenever the contract says it will make
a payment, the contract will indeed have enough money available.

Marlowe’s static analysis relies on SMT solvers, which are able to check
efficiently whether a set of constraints is satisfiable. The main property for us is
whether a contract will have enough money for all payments to be made in full.

Thanks to state of the art libraries like SBV [7], we can describe those con-
straints in a high level language. In the case of SBV, we can write properties as
Haskell functions, with few restrictions on how those functions are implemented;
SBV automatically translates those functions to SMTLib format [3], a language
many SMT solvers understand. However, high level abstractions often have a
tradeoff with efficiency, and static analysis can become very expensive compu-
tationally if implemented naïvely, because it is NP-complete in the general case.

This paper contributes a number of approaches that can be used when op-
timising static analysis, with examples extracted from a case-study where we
applied these approaches. Our approach aims to ensure correctness of the opti-
misations by combining the use of property-based testing and with verification
in an automated theorem prover to establish properties of the optimisations. We
also present empirical data that measures the effect of some of the optimisations
on the implementation of our Marlowe case-study.

The techniques described helped us reduce the analysis time of an implemen-
tation that followed the semantics closely and took a couple of minutes to analyse
contracts of a few kilobytes, to one where the same contract takes less than a
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second to analyse, and where a four-person crowdfunding contract that fully
expanded occupies about 19 megabytes, can be analysed in around 10 minutes.
We have classified optimisation techniques as lightweight and heavyweight.

Lightweight modifications are local and can be done without fundamentally
changing the implementation. We consider three main ideas:

– Removing unnecessary parts from the analysis. If they do not affect
the property that is being verified then we can just remove them.

– Avoiding high level abstractions. High level abstractions aid reasoning
and avoid errors, but also introduce complexity that may not be necessary.

– Reducing the search space by normalising parameters. If there are
several ways of representing some inputs, and the different representations
have no impact on the analysis, we can remove all but one for analysis.

Heavyweight modifications are more fundamental approaches that require con-
siderable changes to the structure of the implementation. But these optimisations
can also translate in important reductions to execution time and memory usage,
as shown by the experiments we report in Section 6. We consider two main ideas:

– Reducing the search space by using normalised execution paths
relevant to the property. Instead of using the search space to model
inputs, we use it to model possible executions, and we only represent each
equivalence class of executions once, i.e: we represent them in a normal form.

– Minimizing the representation of inputs and outputs. We encode
inputs and outputs as concisely as possible, discarding inferable information.

In the following sections, we introduce the semantics of Marlowe as a case study
(Section 2), and we cover a general approach to static analysis (Section 3). We
then, in Section 4 explore in Section the lightweight and heavyweight optimisa-
tion techniques in more detail, and illustrate them with examples of how they
apply to Marlowe static analysis. In Section 5, we illustrate the use of property
based testing on the implementation with heavyweight optimisations. Finally, we
present empirical results that show the effect of heavyweight optimisations on
the execution time and memory usage of Marlowe’s static analysis (Section 6).

2 Marlowe design and semantics

Firstly, we introduce the semantics of Marlowe, the guarantees that are offered
implicitly by the semantics, and how the design choices facilitate static analysis
and make it decidable. A more detailed explanation can be found in [12].

2.1 Structure of Marlowe contracts

The Marlowe language is realised as a set of mutually recursive Haskell data
types. Marlowe contracts regulate interactions between a finite number of par-
ticipants, determined before the contract is deployed.
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Marlowe contracts are able to receive payments, store money and tokens, ask
for input from its participants, and redistribute stored money and tokens among
participants. A contract determines when and which of these actions may be
carried out. Participants may correspond to either individual public keys or to
tokens (Roles). In turn, Roles may be controlled by other contracts.

The main data type in Marlowe is called Contract, and it represents the logic
and actions that the contract allows or enforces. The outmost constructs of the
Contract represent the actions that will be enforced first and, as those constructs
become enforced, the Contract will evolve into one of its continuations (sub-
contracts), and the process will continue until only the construct Close remains.

There are 5 constructs of type Contract:

– Close – signals the end of the life of a contract. Once it is reached, all the
money and tokens stored in the accounts of the contract will be refunded to
the owner of each of the respective accounts.

– If – immediately decides how the contract must continue from between
two possibilities, depending on a given Boolean condition that we call an
Observation. An Observation may depend on previous choices by partici-
pants, on amounts of money and tokens in the contract, or other factors.

– Let – immediately stores a Value for later use. Expressions of type Value
in Marlowe are evaluated to integer values and they depend on informa-
tion available to the contract at the time of evaluation. For example, a Let
construct record the amount of money in an account at a point in time.

– When – waits for an external input. The When construct also specifies a time-
out slot3: after this slot has been reached, the When construct expires, and
no longer accepts any input. There are three kinds of input:
• Deposit – Waits for a participant to deposit an amount of money or

tokens (specified as a Value) in an account of the contract.
• Choice – Waits for a participant to make a choice. A choice is represented

as an integer number from a set specified by the contract.
• Notify – Waits for an Observation to be true. Because contracts are

reactive (they cannot initiate transactions), it is necessary for an external
actor (not necessarily a participant) to Notify the contract.

– Pay – immediately makes a payment between accounts of the contract, or
from an account of the contract to a given participant. The amount trans-
ferred is specified as a Value.

2.2 Semantics

As we mentioned in the previous section, Marlowe contracts are passive: their
code is executed as part of the validation of transactions that are submitted
to the blockchain. Transactions need to be submitted by participants or their
representatives (e.g. user wallets) and validation is atomic and deterministic.

Each transaction may include a list of inputs, a set of signatures, a slot in-
terval, a set of input UTxOs (incoming money and tokens), and a set of outputs

3Slots are blockchain’s proxy for time, they are added to the blockchain periodically.
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(outgoing money and tokens). We use a slot interval because it is very difficult to
know the exact slot in which the transaction will be included in practice. For a
transaction to be valid in Marlowe, the transaction must have the same effect for
every slot within that slot interval (be deterministic). For example, if a transac-
tion has a minimum slot number lower than timeout, and a maximum slot that
is greater, then the transaction will fail with the error AmbiguousSlotInterval.

A key aspect of the Marlowe semantics is that it checks that a particular
transaction is valid given the current state and contract. Because transactions
are deterministic, there should be no reason why someone accidentally sends a
transaction that is invalid for a given State and Contract, since it will only
result in a cost to that participant. However, it is still possible that, due to a
race condition, a participant will send a transaction that no longer applies to a
running Contract and State, but such a transaction would simply be ignored
by the blockchain.

The type signature of the transaction validation function is:

computeTransaction :: TransactionInput -> State -> Contract
-> TransactionOutput

This function can be factored into four main functions:

– reduceContractStep - this function executes the topmost construct that
does not require an input to be executed (i.e: anything but a When that has
not expired or a Close when accounts are empty). It only simplifies the When
construct if it has expired (i.e. the timeout specified in the When is less than
or equal to the minimum slot number). In the case of the Close contract, it
only refunds one of the accounts at each invocation.

– reduceContractUntilQuiescent - this function calls reduceContractStep
repeatedly until it has no further effect,

– applyInput - this function processes one single input. The topmost construct
must be a When that is expecting that particular input and has not expired.

– applyAllInputs - this function processes a list of inputs. It calls applyInput
for each of the inputs in the list, and calls reduceContractUntilQuiescent
before and after every call to applyInput.

The State stores information about the amount of money and tokens in the
contract at a given time, together with the choices made, Let bindings made,
and a lower bound for the current slot:

data State = State { accounts :: Map AccountId Money
, choices :: Map ChoiceId ChosenNum
, boundValues :: Map ValueId Integer
, minSlot :: Slot }

2.3 Extra considerations

Many of the design decisions behind Marlowe have been made with the aim of
preventing potential errors. For example:
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– Classification of money and tokens into accounts separates concerns.
A Marlowe contract will never spend more money or tokens than there are
in an account, even if there is more available in the contract. But a payment
for more than there is will not fail, it will pay as much as is available, in
order to remain as close as possible to the original intention of the contract.

– Account identifiers include an account owner. An account owner is a
participant that will get the money or tokens remaining in an account when
a contract terminates. At the same time, the only construct that can pause
the execution of a contract is the When construct, which has a timeout, this
ensures that all contracts eventually expire and terminate. Together, these
properties ensure that no money or tokens are locked in the contract forever.

– No negative deposits or payments. Marlowe treats negative amounts in
deposits and payments as zero. At the same time, if there happens to be a
request for a deposit with a negative amount, the contract will still wait for
a null deposit to be made, and it will continue as if everything is correct.
This way execution of the contract is disturbed as little as possible.

– Upper limit in the number of inputs that a Marlowe contract can ac-
cept throughout its lifetime. This limit is implied by the path with maximum
number of nested When constructs in the contract, since only one input per
When can be accepted. At the same time, transactions with no effect on the
contract are invalid, thus there is a limit on the maximum number of transac-
tions a contract can accept throughout its life too. This bound prevents DoS
attacks, and it makes static analysis easier. We discuss further in Section 3.

3 Making Marlowe semantics symbolic

In this section, we briefly present and reflect on a technique that can be used
to convert a concrete implementation of a Haskell function into a symbolic one
by using the SBV library [7], and to use this symbolic implementation for static
analysis. In particular, we explore this technique in the context of the Marlowe.

This approach corresponds to our first attempt at implementing static anal-
ysis for Marlowe contracts, and it is a systematic approach that can be carried
out with very few assumptions.

3.1 Overview

The SBV library supports implementing Haskell functions in a way that the
same implementation can be used:

– With concrete parameters, as a normal Haskell function.
– With symbolic parameters, so that properties can be checked for satisfiability

using an SMT solver.
– As part of QuickCheck properties, for random testing.

Parameters that can be used symbolically are wrapped in a monad called SBV.
Values that depend on symbolic values must also be wrapped in the SBV monad.

Our semantics transaction processing function would thus become:
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computeTransaction :: SBV TransactionInput -> SBV State
-> SBV Contract -> SBV TransactionOutput

We just need a function playTrace that takes a list of transactions and calls
computeTransaction for each. We can then write our property to state that the
output of playTrace does not have any failed payments (or other warnings). We
can ask SBV to find an input transaction list that breaks the property. However,
there are a couple of issues with this approach, we review them in Section 3.2.

3.2 Additional considerations

At the time of writing, SBV does not fully support complex custom data types,
but it provides symbolic versions for Either and Tuple types. Our original im-
plementation of Marlowe’s static analysis overcomes this limitation by generating
conversion functions using using Template Haskell [16]. This allows static analy-
sis to remain similar to the semantics. For example, the following data structure:

data Input = IDeposit AccountId Party Money
| IChoice ChoiceId ChosenNum
| INotify

Would be translated to the following type synonym:

type SInput = SBV (Either (AccountId, Party, Money)
(Either (ChoiceId, ChosenNum)

()))

But this approach cannot address recursive datatypes, let alone mutually
recursive datatypes. And the Contract definition uses mutual recursion.

Even if we could use symbolic corecursive datatypes, SMT solvers have an-
other general limitation: if termination of a function is not bounded by a concrete
value, SMT solvers may not terminate when determining the satisfiability of a
property about the function. We discuss how to address this in Section 3.3.

3.3 Adapting the semantics

In order to guarantee termination of the analysis, we need a concrete bound.
Related work often addresses this problem by manually establishing an artificial
bound on the amount of computation, e.g: limiting the number of computation
steps analysed, the number of times loops are unrolled [5,8,9].

Marlowe has natural bounds, given a concrete contract, we can infer:

– The maximum number of inputs that can have an effect on the contract
– The maximum number of transactions that can have an effect on the contract
– All of the account, choice, and Let identifiers that will be used in the contract
– The number of participants that will participate in the contract

From this data, we can also deduce an upper bound for:
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– The number of times that computeTransaction, reduceContractStep, and
applyInput may be called.

– The number of accounts that the contract will use, and the number of ele-
ments there may be in each of the associative maps that comprise the State
of the contract at any given point of the execution.

Marlowe Contracts are finite, and every call to reduceContractStep will either
make no progress or remove one of the constructs, with the exception of Close.
In the case of Close, every call to reduceContractStep refunds one account,
and the number of accounts is also bounded, since each needs to be mentioned
in the Contract. Thus, the symbolic transaction processing function becomes:

computeTransaction :: SBV TransactionInput -> SBV State
-> Contract -> SBV TransactionOutput

There is one more problem: the output Contract returned by the function,
which is wrapped inside the TransactionOutput, is symbolic, since it depends
on the current TransactionInput and State, which are both symbolic.

We get around this by using a continuation style. Instead of returning the
TransactionOutput, we take a continuation function that takes the concrete
Contract and the symbolic version of TransactionOutput without the Contract.

Thus, the symbolic transaction processing function will look something like:

computeTransaction :: SymVal a => SBV TransactionInput
-> SBV State -> Contract
-> (SBV TransactionOutput -> Contract -> SBV a)
-> SBV a

In practice, we also include some extra information about bounds, and we
make some other parts of TransactionOutput concrete.

4 Making static analysis more efficient

In this section, we explain the optimisation techniques in more detail, and we
illustrate them with examples of their application to Marlowe’s static analysis.

4.1 Lightweight modifications

Lightweight modifications are local, which means it is less likely that we will
introduce reasoning errors when implementing them.

Removing unnecessary parts from the analysis. When we use the same
or similar code for both the analysis and the implementation, we may end up
including code that is not relevant to the analysis.

In the case of Marlowe, this was the case of the Close construct. The Close
construct refunds all the money and tokens remaining in the accounts. The
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number of times that reduceContractStep needs to be called depends on how
many accounts have money left, and because this information is symbolic, there
are many potential ways in which execution can unfold. All these paths need to
be represented as constraints, which makes analysing Close very costly.

Fortunately, as it turns out, we do not need to analyse Close at all. Because
it is impossible for the Close construct to produce a failed payment or any other
warning (we have proven this4 using Isabelle [15]). Close only pays as much as
available, so we can safely remove it from the analysis.

Avoiding high level abstractions. High level libraries like SBV, and even
standards like SMTLib, support the use and construction of high level abstrac-
tions, e.g: custom data-types, list, sets. . . Unfortunately, even though high level
abstractions aid reasoning about code, they often prevent optimisations, since
they abstract out aspects that in our particular case may be concrete.

For example, in the case of Marlowe’s static analysis, we initially imple-
mented a symbolic associative map primitive with the only limitation that it
needed a concrete bound in the number of elements. This is straightforward to
realise using the symbolic implementation of list and tuple, both provided by
SBV. However, because we assumed keys were symbolic, looking up a single el-
ement required constraints that compared the element with every key up to the
maximum capacity of the associative map.

Nevertheless, in Marlowe we know the values of all the keys that we are going
to use in maps, because the contract is concrete, and only Account, Choice, and
Let identifiers that are mentioned in the contract will ever make it into the
State. So we do not need keys of the associative map to be symbolic, we can
use a concrete associative map with symbolic values.

Reducing the search space by normalising parameters. The higher the
number of degrees of freedom of the input, the larger the search space, and the
higher the load we are putting on the SMT solver. But, if two or more different
inputs have the same effect on the property we only need to include one of them.

For example, in the case of Marlowe’s static analysis, Marlowe allows several
inputs to be combined into a single transaction. This functionality is important
because each transaction requires the issuer to pay fees. On the other hand, it
also means that static analysis must consider many more possibilities, since the
number of ways of partitioning inputs is exponential in the number of inputs.

However, we can devise a normal form for input traces, in which there is a
maximum of one input per transaction. We only need to make sure that, for
every trace, if it produces a warning, there exists a trace with only one input per
transaction that also produces a warning. Using the automated proof assistant
Isabelle [15], we have shown that, indeed, splitting transactions into transactions

4https://github.com/input-output-hk/marlowe/blob/master/isabelle/
CloseSafe.thy (last visited on 04/04/2020)
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with single inputs and the same slot interval as the original transactions does
not modify the effect of those transactions on a contract5.

This optimization reduces the search space, but transactions may still have
either one or zero inputs, so there are still many ways of distributing the inputs in
transactions. We explain how we reduced the search space further in Section 4.2.

4.2 Heavyweight modifications.

When optimising, if our solution is a local minimum, small changes to the pa-
rameters will not grant any improvement to the result. For that reason, in this
section, we explore ways of optimising that may imply considerable rewriting of
our properties, constraints, and static analysis implementation in general.

Unfortunately, not following the concrete implementation closely is much
more error prone, since there are many more assumptions that we need to make
and reason about. In Section 5, we explore ways of mitigating this issue.

Reducing the search space by using normalised execution paths rel-
evant to the property. Instead of modelling the execution symbolically, we
can focus on modelling the property. We do not even need to consider the repre-
sentation of the counterexamples (we will discuss that in the next section), but
only in what are the conditions for the property to be false.

For example, the main property we want to check is whether there is any pos-
sible execution that produces a failed payment. Thus, we only write constraints
for executions in which this can happen instead of modelling all possibilities.
The most complicated construct in terms of execution is the When construct,
since it allows for transactions that are separate in time to have different ef-
fects depending on when they are issued, all other constructs will get resolved
atomically in one way or another. Without loss of generality, we can structure
possible executions as shown in Figure 1: we can conceptually break the contract
tree into subtrees, where each subtree has a When construct as its root, with the
exception of the subtree at the root of the original tree.

Each level of subtrees corresponds to a potential transaction, i.e: the root sub-
tree will correspond to the first transaction, the set of subtrees that are children
of the first subtree (in the original tree) will correspond to the second transac-
tion, and so on. There may be paths which require fewer transactions/subtrees
because they traverse fewer When constructs.

We split transactions like this because if the maximum slot number of a
transaction is lower than the slot number in the timeout of a When it will stop
before executing that When. Since the When and its continuation may be executed
by a different transaction, the slot numbers for that segment of execution may be
different, which means the values of Values may be different, which means the
amounts in payments and deposits may be different, and thus the warnings issued
may be different as if both segments were executed by the same transaction.

5https://github.com/input-output-hk/marlowe/blob/master/isabelle/
SingleInputTransactions.thy (last visited on 29/04/2020)
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Fig. 1. Distribution of transactions with respect to a contract

However, there is an edge case: a transaction may execute past a When if the
minimum slot number in the transaction is greater or equal than the timeout
of the When. If the transaction expires the When we can no longer separate the
execution before the When and after the When into two different transactions,
because we know that the timeout branch of the When will be executed as part
of the first transaction, and thus it will use the slot interval of the first transaction
(same used for the first segment).

This is not only true for the timeout branch, if we include an input that is
allowed by a When, then the first transaction will continue into the corresponding
When branch, and we will not use a second transaction.

We cannot just constrain the maximum slot number of the first transaction
to be less than the timeout in the When because, if we do that, then we will
miss executions where one transaction expires several When in a row, or where it
expires one When and provides the right input for a later When. And we cannot
just not constrain the maximum slot number of the first transaction because
then we will be considering impossible executions.

We get around this problem by allowing the slot numbers of the first and
second transactions to be equal. If this happens, we will find out that one of the
transactions will be marked as UselessTransaction by the semantics when we
look at the counterexample. So we just need to filter out all transactions that
produce UselessTransaction warnings in the final result.

To sum up, in Section 4.1, we already limited the number of inputs per
transaction to a maximum of one. But now we have also assigned each of the
transactions to a part of the contract, so we no longer need a symbolic list of
transactions, we can use a finite concrete list of symbolic transactions.

One detail we found out during testing is that, even though a When belongs to
the beginning of a transaction, the environment used by the Observations in the
Notify cases of the When correspond to the State before the When is executed
(except for the slot interval). The same is true for the Value in the Deposit
cases, since the amount to deposit must be calculated without considering the
effects of the deposit itself.
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Minimizing the representation of inputs and outputs. When we initially
implemented the efficient version of static analysis for Marlowe, we did not pay
any attention to the inputs and outputs. The first version would simply take
a concrete Contract as input, and it would return a symbolic Boolean that
determined whether the Contract was valid or not. However, if a Contract
turns out to be invalid, we will also want to know why, so we later modified the
property to give a counterexample that illustrated what went wrong. The original
implementation still used some intermediate symbolic variables, but they were
anonymous, and they were created during the exploration of the contract.

A simple way of obtaining a counterexample is to modify the output of the
function to return the offending trace using the symbolic Maybe type. Surpris-
ingly, this change increases the time required by the symbolic analysis severalfold.

An efficient way of extracting counterexample information was to pass a
symbolic fixed-size list, as input to the static analysis, where each element cor-
responds to a transaction and consists of a tuple with four symbolic integers:

1. An integer representing the minimum slot
2. An integer representing the maximum slot
3. An integer representing the When case whose input is being included in the

transaction, where zero represents the timeout branch (and no input).
4. An integer representing the amount of money or tokens (if the input is a

Deposit), or the number chosen (if the input is a Choice)

For short branches (that require fewer transactions) we pad the end of the list
with dummy transactions with all four numbers set to −1.

In order to translate this sequence of numbers into a proper list of transac-
tions that is human readable and we can use to report the counter example, we
need to use the concrete semantics together with the information obtained from
the static analysis to fill the gaps, by iterating through the list and looking at the
evolution of the contract with each transaction. This provides us with the rest of
necessary information, such as the type of a transaction input (e.g: whether it is
a Deposit or a Choice). We also use this process to filter transactions with no
effect, i.e: they produce UselessTransaction as we mentioned in Section 4.2.

We also use this separation of concerns between static analysis and concrete
semantics as an opportunity for applying property based testing.

5 Testing for consistency and equivalence

The more different the static analysis implementation and the concrete imple-
mentation are, the harder it is to ensure they are consistent with each other. To
ensure that heavyweight optimisations remain consistent, we combine the use of
automated proof assistants and the use of property based testing.

5.1 Testing for consistency

If our static analysis does not replicate all the functionality of the semantics,
we can use potential discrepancies as an opportunity for testing, as shown in
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Figure 2. We generate random contracts and we apply the static analysis to
them in order to try to find a counterexample that produces warnings. If we
cannot find any counterexamples then the test passes, but if we find one, we can
test it on the semantics and see whether the counterexample indeed produces
warnings in the semantics too, if it does not we have found a problem in either
the static analysis or the semantics.

A limitation of this approach is that it only tests for false positives; false
negatives can be detected by testing for equivalence (see Section 5.2).

In addition, we can add assertions to the process. In the case of Marlowe, if
the counterexample causes errors during the execution or is formed incorrectly, it
would also mean that there is a problem with the static analysis. For example, it
may be that the counterexample refers to a Case of a When that does not exist, or
that it has invalid or ambiguous intervals. If it has UselessTransactions that
is ok, because we are doing that on purpose, as we mentioned in Section 4.2.

concrete
semantics

counter-example

static
analysis

valid

warning normal

random
contract

Fig. 2. Testing for consistency

yes no

random
contract

static
analysis V1

static
analysis V2

both
valid or
invalid

Fig. 3. Testing for equivalence

5.2 Testing for equivalence

Given two implementations of the static analysis, we have another opportunity
for testing. We have one efficient implementation that is very different from
the semantics and one inefficient implementation that is much closer to the
semantics, and we can compare the results of the two, as shown in Figure 3.

We generate random contracts using a custom QuickCheck [4] generator, feed
them to both implementations, and compare the results. If the results are the
same then test passes, if they are different then one of the implementations is
wrong. This approach covers both types of errors, i.e: false positives and false
negatives (for both of the implementations), but the execution time of the tests is
bounded from below by the slower of the two implementations. The consistency
approach is thus more efficient in finding false positives.
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6 Measurements

In our experiments, the heavyweight optimisations considerably reduced the re-
quirements of both processing time and memory for Marlowe’s static analysis.
We present below the results of measuring the performance of static analysis on
four example contracts, before6 and after7 the heavyweight optimisations.

Unfortunately, at the time of writing, we do not have a completely unop-
timised version of the static analysis that we can use to compare, because the
semantics of Marlowe have changed since we implemented that version. However,
our impression from manual testing is that the impact of lightweight optimisa-
tions was much more modest than the impact of heavyweight optimisations.

Using the perf tool [1], we measured the execution time8 and the overhead of
the generation of the constraints and their solution by Z3 [6]. We also measured
the peak RAM usage of the whole process using GNU’s time tool [10].

In all cases the implementation with the heavyweight optimisations performs
much better and scales further. In the case of the auction and crowdfunding
contracts, whose size grows exponentially, both approaches quickly overwhelm
the resources available in the execution environment. In the case of rent and
coupon bond contracts, which grow linearly, when using the lightweight version
the problem becomes intractable much faster than with the heavyweight one.

Another conclusion that can be derived from the experiments is that, in the
version with lightweight optimisations, most of the processing time seems to be
spent generating of the constraints, and solving is done relatively quickly by Z3;
while the opposite happens for the version with heavyweight optimisations.

Auction contract – Auction.hs

Num. participants 1 2 3 4 5
Contract size (chars) 275 3,399 89,335 4,747,361 413,784,559

Lightweight optimisations
Execution time 0.2205s 4m 45.2015s N/A N/A N/A
Generation overhead 76.61% 96.40% N/A N/A N/A

× execution time 0.1689s 4m 34.9342s N/A N/A N/A
Z3 overhead 23.39% 3.60% N/A N/A N/A

× execution time 0.0516s 10.2673s N/A N/A N/A
RAM usage peak 44,248KB 1,885,928KB N/A N/A N/A

Heavyweight optimisations
Execution time 0.01198s 0.0289s 1.1138s 1h 5m 45.1377s N/A
Generation overhead 16.27% 29.64% 24.09% 80.86% N/A

× execution time 0.001949s 0.008566s 0.268314s 53m 10.038344s N/A
Z3 overhead 83.73% 70.36% 75.91% 19.14% N/A

× execution time 0.010031s 0.020334s 0.845486s 12m 35.099356s N/A
RAM usage peak 17,020KB 17,740KB 49,668KB 2,364,500KB N/A

6https://github.com/input-output-hk/marlowe/blob/master/src/Language/
Marlowe/Analysis/FSSemantics.hs [last visited 19-05-2020]

7https://github.com/input-output-hk/marlowe/blob/master/src/Language/
Marlowe/Analysis/FSSemanticsFastVerbose.hs [last visited 19-05-2020]

8The experiments were run on a laptop computer with a i9-9900K (3.6GHz) pro-
cessor and two modules of 16GB of SODIMM DDR4 RAM at 2400MHz.
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Crowdfunding contract – CrowdFunding.hs

Num. participants 1 2 3 4 5
Contract size (chars) 857 12,704 364,824 19,462,278 1,690,574,798

Lightweight optimisations
Execution time 0.6298s 50m 53.4597s N/A N/A N/A
Generation overhead 85.02% 99.82% N/A N/A N/A

× execution time 0.5356s 50m 47.9635s N/A N/A N/A
Z3 overhead 14.98% 0.18% N/A N/A N/A

× execution time 0.0943s 5.4962s N/A N/A N/A
RAM usage peak 111,980KB 5,641,056KB N/A N/A N/A

Heavyweight optimisations
Execution time 0.0125s 0.041s 1.0515s 32m 15.4478s N/A
Generation overhead 16.68% 25.36% 37.23% 69.83% N/A

× execution time 0.0021s 0.0104s 0.3915s 22m 31.5232s N/A
Z3 overhead 83.32% 74.64% 62.77% 30.17% N/A

× execution time 0.0104s 0.0306s 0.6600s 9m 43.9246s N/A
RAM usage peak 17,016KB 18,768KB 62,108KB 3,715,020KB N/A

Rent contract – Rent.hs

Num. months 1 2 3 4 5
Contract size (chars) 339 595 852 1,109 1,366

Lightweight optimisations
Execution time 0.2850s 3.0303s 2m 53.2458s 3h 22m 13.0122s N/A
Generation overhead 77.55% 91.25% 99.18% 99.94% N/A

× execution time 0.2210s 2.7651s 2m 51.8252s 3h 22m 5.7324s N/A
Z3 overhead 22.45% 8.75% 0.82% 0.06% N/A

× execution time 0.0640s 0.2652s 1.4206s 7.2798s N/A
RAM usage peak 42,052KB 221,960KB 1,237,092KB 9,160,616KB N/A

Heavyweight optimisations
Execution time 0.0114s 0.0111s 0.01132s 0.01124s 0.01255s
Generation overhead 11.55% 11.95% 13.65% 13.69% 21.00%

× execution time 0.0013s 0.0013s 0.0015s 0.0015s 0.0026s
Z3 overhead 88.45% 88.05% 86.35% 86.31% 79.00%

× execution time 0.0101s 0.0098s 0.0098s 0.0097s 0.0099s
RAM usage peak 15,536KB 15,364KB 15,400KB 15,364KB 15,540KB

Coupon bond contract - CouponBond.hs
Num. months 2 3 4 5 6
Contract size (chars) 479 635 791 947 1,103

Lightweight optimisations
Execution time 0.8293s 5.8887s 1m 35.3930s 26m 36.4585s 9h 50m 22.3418s
Generation overhead 76.57% 74.91% 89.29% 72.34% 76.66%

× execution time 0.6350s 4.4112s 1m 25.1764s 19m 14.8781s 7h 32m 34.7672s
Z3 overhead 23.43% 25.09% 10.71% 27.66% 23.34%

× execution time 0.1943s 1.4775s 10.2166s 7m 21.5804s 2h 17m 47.5746s
RAM usage peak 74,180KB 209,724KB 940,924KB 3,283,384KB 13,483,908KB

Heavyweight optimisations
Execution time 0.0092s 0.0095s 0.0097s 0.0102s 0.0105s
Generation overhead 14.51% 15.50% 15.51% 19.71% 19.69%

× execution time 0.0013s 0.0015s 0.0015s 0.0020s 0.0021s
Z3 overhead 85.49% 84.50% 84.49% 80.29% 80.31%

× execution time 0.0079s 0.0080s 0.0082s 0.0082s 0.0085s
RAM usage peak 15,636KB 15,816KB 15,788KB 15,780KB 15,760KB
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These results suggest that the SBV library is able to generate constraints
in a way that they are handled efficiently by Z3, but the process itself can be
costly. However, the execution time required by Z3 is also lower in the case of
the heavyweight optimisations as well as growing more slowly, which suggests
that the optimisations described here affect both parts of the process.

7 Related work

Work in [14] documents a similar effort to ensure correctness of control software
in Haskell using the SBV library; the authors also discuss performance of the
analysis and apply this approach to non-functional requirements.

The idea of using constraint solvers for finding bugs is not new, and there have
been a number of initiatives that have explored its application to the verification
of assertions in programs written using general purpose programming languages
[8,9]; as well as for the compliance with protocols [2,17].

[11] also applies constraint solvers for detecting problems in the usage of
DSLs. The authors observe that SMT solvers have limited support for non-linear
constraints such as exponentiation. This problem does not affect the current de-
sign of Marlowe because it does not support multiplication by arbitrary variables,
and because all inputs are integer and bounded finitely.

8 Conclusion

In this paper we have summarized our work on optimising the static analysis
for Marlowe contracts. We have seen that there are two distinct approaches to
static analysis using SMT, both have advantages and disadvantages. One is less
error prone and straightforward, but inefficient and hard to test; the other is
much more efficient, versatile, and testable, but more error prone. We have also
seen that many specific properties and restrictions characteristic of the target
DSL can be utilized both as optimisation opportunities and, in our case, for
completeness of the analysis. Symbolic execution of a Turing-complete language,
would be intractable, and would require us to manually set a bound; but this is
not in the case for Marlowe.

In the end, we have illustrated how to counteract the main disadvantage of the
optimised approach – its propensity to errors – by using property based testing.
This way we have obtained a static analysis implementation that is efficient,
versatile, testable, and reliable. On the other hand, for the static analysis of
Marlowe contracts, we found out that when running statistics on the equivalence
testing property, most of the bugs were false negatives in the straightforward
implementation, and the optimised implementation seems to be more reliable
thanks to the consistency tests that we run beforehand.

Another advantage of the optimised implementation is that, because it relies
on fewer and simpler features, it is compatible with more SMT solvers which,
in turn, means that it is less reliant on the correctness or efficiency of a single
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solver. If one solver fails to give an answer, we can try another; if we want further
evidence that a contract is valid, we can test it with several solvers.

In the future, we would like to extend static analysis to cover other potential
problems in Marlowe contracts and to aid their development. We plan to use
static analysis to locate unreachable subcontracts, to allow developers to provide
custom assertions and check their satisfiability, and to allow users to inspect the
possible maximum and minimum values that particular expressions can reach.
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