
Marlowe: implementing and analysing financial
contracts on blockchain

Pablo Lamela Seijas1, Alexander Nemish1,
David Smith1, and Simon Thompson1,2

1 IOHK, Hong Kong, alexander.nemish@iohk.io, pablo.lamela@iohk.io,
simon.thompson@iohk.io, david.smith@tweag.io,

2 School of Computing, University of Kent, UK, s.j.thompson@kent.ac.uk

Abstract. Marlowe is a DSL for financial contracts. We describe the
implementation of Marlowe on the Cardano blockchain, and the Marlowe
Playground web-based development and simulation environment.
Contracts in Marlowe can be exhaustively analysed prior to running
them, thus providing strong guarantees to participants in the contract.
The Marlowe system itself has been formally verified using the Isabelle
theorem prover, establishing such properties as the conservation of money.

Keywords: Cardano · DSL · functional · Haskell · SMT · static analysis

1 Introduction

Marlowe3 is a domain-specific language (DSL) for implementing financial con-
tracts on blockchain: our initial target is Cardano, but it could be implemented
on many distributed ledgers (DLT platforms), including Ethereum. Marlowe is
embedded in Haskell, allowing users selectively to use aspects of Haskell – typ-
ically definitions of constants and simple functions – to express contracts more
readably and succinctly. Section 2 gives an overview of the language, and the
changes made to it since it was originally introduced in [9].

Marlowe is specified by a reference semantics for the language written in
Haskell, and we can use that in a number of ways. We can interpret Marlowe
contracts in Haskell itself, but we can also use that implementation, compiled into
Plutus [6], to interpret Marlowe directly on the Cardano blockchain, see Section
3. We can also execute the semantics – translated into PureScript – directly in
a browser, to give an interactive simulation environment, see Section 6.

Because Marlowe is a DSL, we are able to build special purpose tools and
techniques to support it. Crucially in a financial environment, we are able to
exhaustively analyse contracts without executing them, so that we can, for in-
stance, check whether any particular contract is able to make all the payments
it should: in the case it is not, we get an explicit example of how it can fail. This
analysis, reported in Section 4, is built into the Marlowe Playground. Finally, we
are able to use formal verification to prove properties of the implementation of
Marlowe, including a guarantee that “money in = money out” for all contracts;
see Section 5.
3 see https://github.com/input-output-hk/marlowe for complete project

https://github.com/input-output-hk/marlowe

2 P. Lamela Seijas, A. Nemish, et al.

2 Marlowe overview

Since the first publication, we have revised the language design: this section gives
a brief overview of the current (3.0) version of the language and its semantics.

The Marlowe model Contracts are built by putting together a small number
of constructs that in combination can describe many different financial contracts.

The parties to the contract, also called the participants, can engage in various
actions: they can be asked to deposit money, or to make a choice between various
alternatives. In some cases, any party will be able to trigger the contract just to
notify it that some condition has become true (e.g., a timeout has occurred).

The Marlowe model allows for a contract to control money in a number of
disjoint accounts: this allows for more explicit control of how the money flows
in the contract. Each account is owned by a particular party to the contract,
and that party receives a refund of any remaining funds in the account when the
contract is closed.

Marlowe contracts describe a series of steps, typically by describing the first
step, together with another (sub-) contract that describes what to do next. For
example, the contract Pay a p v cont says “make a payment of v Lovelace to
the party p from the account a, and then follow the contract cont”. We call cont
the continuation of the contract.

In executing a contract, we need to keep track of the current contract: after
making a step in the example above, the current contract would be cont. We also
have to keep track of some other information, such as how much is held in each
account: this information together is the state, which generally changes at each
step. A step can also see an action taking place, such as money being deposited,
or an effect being produced, e.g. a payment. It is through their wallets that users
are able to interact with Marlowe contracts running on the blockchain, making
deposits and receiving payments.

Marlowe step by step Marlowe has five ways of building contracts, we call
these contract constructs. Contract constructs, in turn, can also contain values,
observations and actions.

Values, observations and actions are used to supply external information and
inputs to a running contract to control how it will evolve.

Values include some quantities that change with time, like the current slot
number, the current balance of an account, and any choices that have already
been made. Values can be combined using addition, subtraction and negation.

Observations are Boolean expressions that compare values, and can be com-
bined using the standard Boolean operators. It is also possible to observe whether
any choice has been made (for a particular identified choice). Observations will
have a value at every step of execution.

Actions happen at particular points during execution and can be (i) deposit-
ing money, (ii) making a choice between various alternatives, or (iii) notifying
the contract that a certain observation has become true.

Marlowe: implementing and analysing financial contracts on blockchain 3

Contract constructs are the main building block of contracts, and there are five
of them: four of these – Pay, Let, If and When – build a complex contract from
simpler contracts, and the fifth, Close, is a simple contract. At each step of
execution we will obtain a new state and continuation contract and, in some it
is possible that effects, like payments and warnings, can be generated too.

Pay: A payment contract Pay a p v cont will make a payment of value v
from the account a to a payee p, which will be one of the contract participants
or another account in the contract. Warnings will be generated if the value v is
not positive, or if there is not enough in the account to make the payment in full.
In the first case, nothing will be transferred; in the later case, a partial payment
(of all the money available) is made. The contract will continue as cont.

Close: A contract Close provides for the contract to be closed (or termi-
nated). The only action that is performed is to refund the contents of each
account to their respective owners. This is performed one account per step, but
all accounts will be refunded in a single transaction. All contracts eventually
reduce to Close.

If: The conditional If obs cont1 cont2 will continue as cont1 or cont2,
depending on the Boolean value of the observation obs on execution.

When: This is the most complex constructor for contracts, with the form
When cases timeout cont. It is a contract that is triggered on actions, which
may or may not happen at any particular slot: the permitted actions and their
consequences are described by cases.

The list cases contains a collection of cases of the form Case ac co, where
ac is an action and co a continuation (another contract). When the action ac
is performed, the state is updated accordingly and the contract will continue as
described by co.

In order to make sure that the contract makes progress eventually, the con-
tract When cases timeout cont will continue as cont as soon as any valid
transaction is issued after the timeout (a slot number) is reached.

Let: A let contract Let id val cont causes the expression val to be eval-
uated, and stored with the name id. The contract then continues as cont.

3 Implementation of Marlowe on Cardano

Marlowe is specified by an executable semantics written in Haskell, but to make
it usable in practice with financial contracts, it needs to be implemented on a
blockchain. In this section, we explain how Marlowe is executed on the Cardano
blockchain using an interpreter 4 written in the Plutus programming language.

3.1 Cardano and Plutus

Cardano is a third-generation blockchain that solves the energy usage issue by
moving to an energy efficient Proof of Stake protocol [2].
4 The implementation is available at https://github.com/input-output-hk/
plutus/blob/0ca9af4f6614d591de7ebbe4dd759ce122d74efd/marlowe/src/
Language/Marlowe/Semantics.hs.

https://github.com/input-output-hk/plutus/blob/0ca9af4f6614d591de7ebbe4dd759ce122d74efd/marlowe/src/Language/Marlowe/Semantics.hs
https://github.com/input-output-hk/plutus/blob/0ca9af4f6614d591de7ebbe4dd759ce122d74efd/marlowe/src/Language/Marlowe/Semantics.hs
https://github.com/input-output-hk/plutus/blob/0ca9af4f6614d591de7ebbe4dd759ce122d74efd/marlowe/src/Language/Marlowe/Semantics.hs

4 P. Lamela Seijas, A. Nemish, et al.

Cardano aims to support smart contracts during its Shelley release in 2020.
Cardano smart contract platform is called Plutus, and it uses Haskell program-
ming language to generate a form of SystemFω, called Plutus Core, by extending
GHC using its plugin support [8, Section 13.3].

To implement Marlowe contracts, we use the PlutusTx compiler, which com-
piles Haskell code into serialized Plutus Core code, to create a Cardano validator
script that ensures the correct execution of the contract. This form of implemen-
tation relies on the extensions to the UTxO model described in [6].

3.2 Extended UTxO

Cardano is a UTxO-based (unspent transaction output) blockchain, similar to
Bitcoin [5]. It extends the Bitcoin model by allowing transaction outputs to
hold a Data Script. As the name suggests, this is a serialised data value used
to store and communicate a contract state. This allows us to create complex
multi-transactional contracts. In a nutshell, the EUTxO model looks like this:

PubKey: Alice
value: ₳400

Validator
Data Script
Value: ₳600

Spent Tx Output

Unspent Tx Output

Unspent Tx Output

Validator
Data Script
Value: ₳1000

Redeemer

Validator(Data Script, Redeemer, PendingTx) !== True

PendingTx

where black circles represent unspent transaction outputs, and red lines show
transaction inputs that reference existing transaction outputs. Each transaction
output contains a Value, and is protected either by a public key, or by a Validator.

In order to spend an existing transaction output protected by a Validator,
one must create a transaction (a PendingTx) that has an input that references
the transaction output, and contains a Redeemer, such that Validator(Data
Script, Redeemer, PendingTx) evaluates to True. A valid signature is re-
quired to spend a public key transaction output.

3.3 Design space

There are several ways to implement Marlowe contracts on top of Plutus. We
could write a Marlowe to Plutus compiler that would convert each Marlowe
contract into a specific Plutus script. Instead, we chose to implement a Marlowe
interpreter as a single Plutus script. This approach has a number of advantages:

– It is simple: having a single Plutus script that implements all Marlowe con-
tracts makes it easier to implement, review, and test what we have done.

Marlowe: implementing and analysing financial contracts on blockchain 5

– Implementation is close to the semantics of Marlowe, as sketched above and
in more detail in [9], which makes it easier to validate.

– The same implementation can be used for both on- and off-chain (wallet)
execution of Marlowe code.

– It facilitates client-side contract evaluation, where we reuse the same code
to do contract execution emulation in an IDE, and compile it to WASM/-
JavaScript on the client side, e.g. in the Marlowe Playground.

– Having a single interpreter for all (or a particular group of) Marlowe con-
tracts allows us to monitor the blockchain for these contracts, if required.

– Finally, Cardano nodes could potentially use an optimised interpreter (e.g: na-
tive) just for Marlowe contracts, which would save processing time.

Marlowe contract execution on the blockchain consists of a chain of transactions
where, at each stage, the remaining contract and its state are passed through
the Data script, and actions/inputs (i.e. choices and money deposits) are passed
via the Redeemer. Each step in contract execution is a transaction that spends
a Marlowe contract transaction output by providing a valid input as Redeemer,
and produces a transaction output with a the remaining Marlowe contract and
the updated state.

We store the remaining contract in the Data script, which makes it visible
to everyone. This simplifies contract reflection and retrospection.

3.4 Contract lifecycle on the extended UTxO model

As described above, the Marlowe interpreter is realised as a Validation script.
We can divide the execution of a Marlowe Contract into two phases: creation
and execution.

Creation Contract creation is realised as a transaction with at least one script
output, with the particular Marlowe contract in the data script, and protected
by the Marlowe validator script. Note that we do not place any restriction on
the transaction inputs, which could use any other transaction outputs, including
other scripts. This gives this model optimal flexibility and composability.

data MarloweData = MarloweData {
marloweState :: State,
marloweContract :: Contract }

The contract has a state

data State = State { accounts :: Map AccountId Ada
, choices :: Map ChoiceId ChosenNum
, boundValues :: Map ValueId Integer
, minSlot :: Slot }

where accounts maps account ids to their balances, choices stores user made
choice values, boundValues stores evaluated Value’s introduced by Let expres-
sions, and minSlot holds a minimal slot number that a contract has seen, to
avoid ‘time travel to the past’.

6 P. Lamela Seijas, A. Nemish, et al.

Execution Marlowe contract execution consists of a chain of transactions, where
the remaining contract and state are passed through the data script, and input
actions (i.e. choices) are passed as redeemer scripts.

Each execution step is a transaction that spends a Marlowe contract transac-
tion output by providing an expected input in a redeemer script, and produces
a transaction output with a Marlowe contract as continuation.

The Marlowe interpreter first validates the current contract state: i.e. we
check that the contract locks at least as much as specified by the contract bal-
ances (the accounts field in State), and that balances are strictly positive. 5

We then apply computeTransaction to the contract inputs, the contract
continuation, and new state to compute the expected transaction outcomes:

computeTransaction ::
TransactionInput -> State -> Contract -> TransactionOutput

where a TransactionInput consists of the current slot interval, together with
other ontract inputs, and the outputs combine any payments and warnings with
the resulting output state and contract.

Given a list of Input’s from Redeemer, the interpreter reduces a contract
until it becomes quiescent: either it evaluates to Close, or it expects a user
input in a When construct. All Pay, If, Let, Close constructs are evaluated
immediately.

The evaluation function returns a new contract state, contract continuation,
a list of warnings (such as partial payments), and a list of expected payments
(i.e. one for each of the Pay constructs evaluated).

The on-chain Validator code cannot generate transaction outputs, but can
only validate whatever a user provides in a transaction. Consider this simple
zero coupon bond example.

When [Case (Deposit aliceAccount alicePubKey (Constant 850_000_000))
(Pay aliceAccount (Party bobPubKey) (Constant 850_000_000)

(When
[Case

(Deposit aliceAccount bobPubKey (Constant 1000_000_000))
Close

] (Slot 200) Close
))] (Slot 100) Close

Here we expect Alice to deposit 850 Ada (850,000,000 Lovelace) into her aliceAccount
before slot 100. Otherwise, we Close the contract.

If Alice deposits the money before slot 100, money immediately goes to Bob,
by requiring a transaction output of 850 Ada to Bob’s public key address. Alice
must produce the following Redeemer to satisfy the Marlowe validator:

5 Using the Isabelle proof assistant, we have formally verified that given a state with
positive balances, it is impossible for any possible contract and inputs to result in
non-positive balances. This is described in more detail in Section 5.2.

Marlowe: implementing and analysing financial contracts on blockchain 7

[IDeposit aliceAccount alicePubKey 850000000]

Bob is then expected to deposit 1000 Ada into Alice’s account before slot 200.
If he does, the contract is closed, and all remaining balances must be paid out
to their respective owners. In our case, 1000 Ada must be paid to Alice.

Contract Contract'

Change

[IDeposit Alice ₳850] Paid to Bob

Paid to Alice

Create Alice Bob

[IDeposit Bob ₳1000]

Note, that it is possible to provide multiple inputs at a time, allowing as many
steps of a contract execution as necessary to be merged. This gives atomicity to
some operations, and saves on transaction fees.

Ensuring execution validity Except for the transaction that closes a Marlowe
contract, the Marlowe validator script checks that a spending transaction con-
tains a valid continuation output, i.e: the hash of the output validator is the
same (same hash), and the new state and contract are the expected ones: the
ones resulting from applying the computeTransaction to the given inputs.

Closing a contract When a contract evaluates to Close, all remaining balances
the accounts of the contract are payed out to the respective owners of each
account, and the contract is removed from the set of unspent transaction outputs.

Future Work Cardano extends its ledger rules to support forging of custom
currencies and tokens.Simple token creation gives interesting possibilities of rep-
resenting Marlowe contract parties by tokens. This tokenization of contract par-
ticipants abstracts away concrete public keys into contract roles. In turn, those
roles could be traded independently of a contract. We are working on adding
multicurrency or roles support to Marlowe.

4 Static analysis of contracts

Marlowe semantics use types to prevent many non-sensical contracts from being
written. But there are potential problems which are harder to detect until run-

8 P. Lamela Seijas, A. Nemish, et al.

time, for example, whether there will be enough money to issue all the payments
declared in the contract. At that point, it may already be too late to fix them,
particularly in the case of blockchain.

Fortunately, in the case of Marlowe, a computer can decidedly determine
whether a particular contract satisfies certain property before executing it, and
it can provide a counter-example when it does not.

Our implementation relies on the Haskell library SBV, which in turn relies
on existing SMT solvers to check satisfiability of properties.

4.1 SBV library

SBV [7] (SMT Based Verification) library provides a high-level API that allows
developers to automatically prove properties about Haskell programs, among
other functionalities. The SBV library translates these properties to SMTLib
queries, passes them to one or several SMT solvers, and translates the results
back to the format in which the queries were written.

SBV monad SBV provides a monad called SBV, a function can use parameters
wrapped in this monad to represent symbolic values. Functions that take sym-
bolic values can be used as properties and passed to the solver, which will replace
the symbolic values with concrete values that satisfy or falsify the property.

4.2 Using SBV to analyse Marlowe Contracts

Marlowe semantics represents errors that can be found at runtime as Warnings.
The property that we have implemented using SBV library can be enunciated

as: “the given contract will not need to issue warnings at runtime no matter the
inputs it receives”.

This property is essentially a symbolic version of the semantics that returns a
list of the warnings produced by a symbolic trace (a symbolic list of transactions
input to the contract):

warningsTraceWB :: Bounds -> SSlotNumber -> SList NTransaction
-> Contract -> SList NTransactionWarning

where types that begin with S, like SSlotNumber, are abbreviations for the sym-
bolic versions of types: in this case SBV SlotNumber. The types that begin with
N are nested types, which we explain in the Custom datatypes section below.

Custom datatypes SBV does not currently seem to support in general the use
of custom datatypes. Fortunately, SBV supports tuples and the Either type. We
can represent all types that Marlowe requires as combinations of Either and
tuples, with the exception of the Contract type, but we do not need a symbolic
version of the Contract type because we know its value at the time of analysis.
For example, the TransactionResult type:

Marlowe: implementing and analysing financial contracts on blockchain 9

data TransactionResult
= TransactionProcessed [TransactionWarning]

[TransactionEffect]
State

| TransactionError TransactionError

becomes the nested type synonym NTransactionResult:

type NTransactionResult =
Either ([NTransactionWarning], [NTransactionEffect], NState)

NTransactionError

Because working with nested types is much more error prone than working with
the original data-types, we used Template Haskell [14] to implement functions
that transform the custom datatypes into nested types and generate the appro-
priate conversion functions.

Bounds for the state and the inputs The recursion in the execution of
the semantics is bounded by the Contract, and because the Contract is not a
symbolic parameter, the translation will terminate.

However, in both the input and the State record there are several lists (rep-
resenting finite maps) that are not explicitly bounded in the implementation.
Some parts of the semantics are bounded by the length of these lists (or maps),
such as the implementation of Close. In order for the symbolic implementation
to be finite, we need to find a bound for the length of these lists or maps.

Fortunately, we can infer a bound for all this lists quite straightforwardly.
The least obvious one is the length of the list of transactions; we discuss the
proof for this bound in Section 5.4.

Returning non-symbolic Contract values Values that rely on symbolic val-
ues have to be themselves symbolic, and the continuation Contract after each
step depends on the Inputs and State, which are both symbolic. But having
the contract as a symbolic parameter would be inconvenient since it is recursive,
we know it in advance, and we use it to bound the execution of the symbolic
semantics.

We work around this problem by modifying the signature of the function to
receive a continuation function instead, and instead of just returning a value,
we return the result of applying the continuation function to the result we were
planning to return.

For example, the original type signature for the apply function was:

apply :: Environment -> State -> Input -> Contract -> ApplyResult

and the symbolic version of the apply function has the following signature:

apply :: SymVal a => Bounds
-> SEnvironment -> SState -> SInput -> Contract
-> (SApplyResult -> DetApplyResult -> SBV a) -> SBV a

10 P. Lamela Seijas, A. Nemish, et al.

where DetApplyResult contains the parts of ApplyResult that are not symbolic
(like the Contract).

5 Formal verification of the Marlowe semantics

We can also use proof assistants to demonstrate that the Marlowe semantics
presents certain desirable properties, such as that money is preserved and any-
thing unspent is returned to users by the end of the execution of any contract.

Currently, we have translated the Haskell Marlowe semantics to Isabelle while
keeping both versions as close as possible, but we decided to make them different
in two main aspects:

– We use integers for identifiers because they are easier to handle than strings.
– We use a custom implementation of maps and sets that use lists because

Isabelle already provides many theorems that are proved for lists.

5.1 Termination proof

Isabelle automatically proves termination for most function. This is not the
case for reductionLoop. This function repeatedly calls reduceContractStep
until it returns NotReduced, so proving overall termination requires a proof that
reduceContractStep will eventually do that. In order to prove this, we defined
a measure for the size of a pair of Contract and State:

fun evalBound :: "State ⇒ Contract ⇒ nat" where
"evalBound sta cont = length (accounts sta) + 2 * (size cont)"

where size is a measure already generated automatically by Isabelle.
We need the number of accounts in the State because the size of the contract

Close will not decrease when calling reduceContractStep, but the number of
accounts will, unless they are all empty.

And we needed to multiply the size of the Contract by two because the
primitive Deposit may increase the number of accounts by one, so we need
to multiply the effect of the reduction of the size of the contract in order to
compensate that.

5.2 Valid state and positive account preservation

There are some values for State that are allowed by its type but make no sense,
especially in the case of Isabelle semantics where we use lists instead of maps:

1. The lists represent maps, so they should have no repeated keys.
2. We want two maps that are equal to be represented the same, so we force

keys to be in ascending order.
3. We only want to record those accounts that contain a positive amount.

We call a value for State valid if the first two properties are true. And we say
it has positive accounts if the third property is true.

We have proved that functions in the semantics preserve all three properties.

Marlowe: implementing and analysing financial contracts on blockchain 11

Quiescent result A contract is quiescent if and only if the root construct When,
or if the contract is Close and all accounts are empty. We have proved that, if an
input State is valid and accounts are positive, then the output will be quiescent.

5.3 Money preservation and contract timeout

One of the dangers of using smart contracts is that a badly written one can
potentially lock its funds forever. By the end of the contract, all the money
paid to the contract must be distributed back, in some way, to a subset of the
participants of the contract. To ensure this is the case we proved two properties:

Money preservation Money is not created or destroyed by the semantics.
More specifically, the money that comes in plus the money in the contract before
the transaction must be equal to the money that comes out plus the contract
after the transaction, except in the case of an error.

Timeout closes a contract For every Marlowe Contract there is a slot number
after which an empty transaction can be issued that will close the contract and
refund all the money in its accounts.

A conservative upper bound for the expiration slot number can be calculated
efficiently by using the function maxTime (or maxTimeContract in the Isabelle
semantics), essentially by taking the maximum of all the timeouts in the contract.

We proved that this conservative upper bound is general enough for every
contract, by showing that, if the contract is not closed and empty, then an empty
transaction sent after maxTime will close the contract and empty the accounts.

5.4 Bound on the maximum number of transactions

Another property of Marlowe is that any given Contract has an implicit finite
bound on the maximum number of Transactions that it accepts. This is a
convenient property for two reasons.

First, it reduces the danger of Denial of Service (DoS) attacks, because the
number of valid inputs is limited, an attacker participant cannot arbitrarily
block the contract by issuing an unbounded amount of useless Transactions.
Secondly, the number of transactions bounds the length of traces that symbolic
execution (see Section 4) needs to explore.We state the property as follows:

lemma playTrace_only_accepts_maxTransactionsInitialState :
"playTrace sl c l = TransactionOutput txOut

=⇒ length l ≤ maxTransactionsInitialState c"

where maxTransactionsInitialState is essentially the maximum number of
nested When constructs in the contract plus one.

This property implies that any trace that is longer than this is guaranteed
to produce at least one error. Because transactions that produce an error do

12 P. Lamela Seijas, A. Nemish, et al.

not alter the state of the contract, such a list of transactions (a trace) will be
equivalent to a list of transactions that does not have the erroneous transaction.
Thus, we do not lose generality by only exploring shorter traces.

6 The Marlowe Playground

For Marlowe to be usable in practice, users need to be able to design and de-
velop Marlowe contracts, and also to understand how contracts will behave once
deployed to the blockchain, but without actually deploying them.

The Marlowe Playground, a web-based tool that supports the interactive
construction, revision, and simulation of smart contracts written in Marlowe,
provides these facilities, as well as access to a static analysis of contracts (as
described in the previous section), an online tutorial for Marlowe and a set
of example contracts. The playground is available at https://prod.meadow.
marlowe.iohkdev.io/.6

At the top level, the playground offers three panes: the main Simulation
pane, as well as panes for developing Marlowe contracts, embedded in Haskell
or using the Blockly visual language.

Development On the simulation pane, “pure” Marlowe contacts can be developed
directly, not embedded in another language. Two reasons for doing this are:

– There is a shallower learning curve for users who are new to Haskell or
programming languages in general. The Marlowe constructs are quite simple,
and there is no need, at least initially, to learn about Haskell syntax or even
variables, functions etc.

– As we step through the execution of a contract in a simulation, the contract
is reduced; it is very useful to be able to view, or even edit, the reduced
contract during this execution.

As contracts become larger it makes sense to use another editor in the Haskell
pane. Here contracts can be written using facilities from Haskell to abbreviate
and make more readable the description of the contracts. These contracts can
then be transferred as a pure Marlowe data structure into the simulation pane.

Contracts can also be written using Google’s Blockly visual programming
language, as was earlier described in Meadow [9]. Blockly gives an easy way to
introduce the concepts of Marlowe to users who have no programming knowledge,
and in particular the editor gives users a set of options for each construct as the
contract is built. Once a contract has been constructed in Blockly it is possible
to transfer that contract to the simulation pane. It is also possible to transfer a
Marlowe contract to Blockly for further editing.

6 Development of the playground is rapid, and the latest, unstable, version is also
available at https://alpha.marlowe.iohkdev.io/.

https://prod.meadow.marlowe.iohkdev.io/
https://prod.meadow.marlowe.iohkdev.io/
https://alpha.marlowe.iohkdev.io/

Marlowe: implementing and analysing financial contracts on blockchain 13

The Marlowe editor in the unstable version of the play-
ground has a feature called holes to aid writing contracts.
If we enter the contract ?mycontract we will be presented
with a dropdown list of values that could be used.

In our case ?mycontract must be a Contract of some
sort, and so we are offered a choice of Contract construc-
tors from a dropdown list. If we choose Pay then the Mar-
lowe editor will automatically fill in a skeleton Pay con-
tract with new holes where we need to provide values.

Pay ?accountId_1_1 ?payee_1_2 ?value_1_3 ?contract_1_4

New options will be presented, one for each hole, and each will have a dropdown
list of all the possible values.

A complete contract can be written in this guided way
with the user needing only to fill in strings and numbers
by hand. This approach to writing holes in your code and
“asking” the compiler what you could put in there is easy
to implement in a DSL because there are very limited
options, however is is also becoming popular with more

complex languages such as Haskell and Idris.
Users can at any point save the current contract directly to a Github Gist, as

well as being able to re-load contracts from Github Gists. There are also some
demo contracts that can be loaded in their Haskell and Marlowe versions.

Simulation Contracts written in the Marlowe editor are parsed in real-time and if
there are no errors (and no holes) then the contract is analysed to discover which
actions a user could take to progress the contract. These actions are displayed in
the “Input Composer” above the editor. Consider the following example contract:

When [Case (Deposit (AccountId 0 "investor")
"guarantor" (Constant 1000_000000)) Close] 10 Close

In this case, the only action a user can take to progress the contract is to accept
a deposit of 1000 ADA from the guarantor to the investor’s account. Because of
this, the playground can display this action in the input composer.

The user can then choose to add this
action to a transaction being pre-
pared. Once the action is added other
inputs become possible; these are dis-
played in the input composer, and

again they can be added to the transaction being composed. In this way, multiple
actions can be added to a transaction
before it is applied. A user can then
apply this transaction and in the ex-
ample above this would result in the
state pane showing a single payment

14 P. Lamela Seijas, A. Nemish, et al.

and in addition the contract in the Marlowe editor will have been reduced to
Close.

At any point in the simulation, the user can undo any steps made: in this
particular case, they can undo the application of the transaction, and iteratively
undo more steps. At any point, they can also reset the contract to its initial
state. This enables users to apply transactions, see their effects, step back, and
try different transactions to see the effects of the changes on the result. They
can also change the reduced contract to investigate variants of the original.

The final feature that we would like to present is the static analysis of con-
tracts. As described in the previous section, it is possible to carry out a symbolic
execution of a contract and then use a SMT solver to look for cases that could
cause unwanted situations. The playground uses this to search for situations
where contract execution would cause warnings. For example, suppose you write
a contract that causes a payment of 450 Lovelace from Alice to Bob but the
contract allows a situation where Alice has only deposited 350 Lovelace. The the
static analysis will find this partial payment case and report it to the playground
user with an example of how it could occur.

7 Related work

An earlier paper [10] reviews smart contracts on blockchain. Here we look at a
number of recent systems that bear direct comparison with Marlowe, rather than
general purpose languages. Nxt [11], is special-purpose in providing a “fat” high-
level API, containing built-in transaction types and transactions that support
some 250 primitive operations; these can be “scripted” in a client (only) using a
binding to the API, which is available, for instance, in JavaScript. In providing
such specificity this bears comparison with our implementation of contracts from
the ACTUS standard [1].

Our work is inspired by the original work of Peyton Jones and others [13]
to describe financial contracts using a DSL embedded in Haskell. The Findel
project [4] examines financial contracts on the Ethereum platform, and is also
based on [13]. The authors note that payments need to be bounded; this is made
concrete in our account by our notion of commitments. They take no account of
commitments or timeouts as our approach does, and so are unable to guarantee
some properties – such as a finite lifetime – built into Marlowe by design.

BitML [3] is a DSL for specifying Marlowe-like contracts that regulate trans-
fers on the Bitcoin blockchain, and is implemented via a compiler that translates
contracts into Bitcoin transactions plus strategies. Participants execute a con-
tract by appending these transactions on the Bitcoin blockchain, according to
their strategies, which involve the exchange of bitstrings that guarantee to a
very high probability the correctness of contract execution. Marlowe is directly
implemented by an interpreter which could also be implemented on a covenant-
based [12] extension of the Bitcoin blockchain.

Marlowe: implementing and analysing financial contracts on blockchain 15

8 Conclusions and future work

Rather than aiming to be general-purpose, Marlowe is a DSL designed to support
financial contracts on blockchain. We leverage its specificity in our work on
static analysis and verification, where we are able to deliver much greater impact
and focus than we could for a general-purpose language. We are able to shape
the development and simulation environment to give stronger user support too.
Moreover, Marlowe presents a model for how other DSLs can be built in this
space, supporting different domains such as provenance in the supply chain.

Defining the language by means of an executable reference semantics means
that we can, as well as directly executing this semantics, generate an on-chain
interpreter for it and simulate it in browser using the Haskell-like languages
Plutus and PureScript. This is particularly straightforward when working with
a subset of Haskell that is represented in the same way on these languages.

Our medium term aim is launching on Cardano blockchain itself, by which
time we expect to have added multiple currencies to Marlowe, as well as making
(roles in) Marlowe contracts tradeable, through tokenising contract roles.

References

1. ACTUS: , https://www.actusfrf.org (Last accessed 09-12-2019)
2. Badertscher, C., et al.: Ouroboros Genesis: Composable Proof-of-Stake Blockchains

with Dynamic Availability. In: CCS ’18 (2018)
3. Bartoletti, M., Zunino, R.: BitML: A Calculus for Bitcoin Smart Contracts. In:

CCS ’18. ACM (2018)
4. Biryukov, A., Khovratovich, D., Tikhomirov, S.: Findel: Secure Derivative Con-

tracts for Ethereum. In: Brenner, M., et al. (eds.) Financial Cryptography and
Data Security. pp. 453–467. Springer International Publishing (2017)

5. Bonneau, J., et al.: SoK: Research perspectives and challenges for bitcoin and
cryptocurrencies. In: IEEE Symposium on Security and Privacy (SP). IEEE (2015)

6. Chakravarty, M., et al.: Functional Blockchain Contracts. https://iohk.io/en/
research/library/papers/functional-blockchain-contracts/ (2019)

7. Erkök, L.: SBV: SMT Based Verification in Haskell. http://leventerkok.github.
io/sbv/ (2010), [last accessed 03-12-2019]

8. GHC: User’s Guide. https://downloads.haskell.org/∼ghc/8.6.3/docs/
html/users_guide/index.html (2019), accessed: 2019-02-20

9. Lamela Seijas, P., Thompson, S.: Marlowe: Financial Contracts on Blockchain.
In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods,
Verification and Validation. Industrial Practice. ISoLA 2018. Springer (2018)

10. Lamela Seijas, P., Thompson, S., McAdams, D.: Scripting smart contracts for dis-
tributed ledger technology. Cryptology ePrint Archive, Report 2016/1156 (2016),
https://eprint.iacr.org/2016/1156

11. Nxt. https://nxtplatform.org/ (2013), [last accessed 26-03-2018]
12. O’Connor, R., Piekarska, M.: Enhancing Bitcoin transactions with covenants. In:

Financial Cryptography Workshops. LNCS, vol. 10323. Springer (2017)
13. Peyton Jones, S., et al.: Composing contracts: An adventure in financial engineering

(functional pearl). In: Proceedings of the Fifth ACM SIGPLAN ICFP. ACM (2000)
14. Sheard, T., Peyton Jones, S.: Template meta-programming for Haskell. In: Pro-

ceedings of the 2002 Haskell Workshop, Pittsburgh. ACM SIGPLAN (2002)

https://www.actusfrf.org
https://iohk.io/en/research/library/papers/functional-blockchain-contracts/
https://iohk.io/en/research/library/papers/functional-blockchain-contracts/
http://leventerkok.github.io/sbv/
http://leventerkok.github.io/sbv/
https://eprint.iacr.org/2016/1156
https://nxtplatform.org/

	Marlowe: implementing and analysing financial contracts on blockchain

