Boiani, M., Casser, E., Fuellen, G. and Christians, E. S. (2019). Totipotency continuity from zygote to early blastomeres: a model under revision. Reproduction 158, R49–R65.
Chenevert, J., Roca, M., Besnardeau, L., Ruggiero, A., Nabi, D., McDougall, A., Copley, R. R., Christians, E. and Castagnetti, S. (2019). The spindle assembly checkpoint functions during early development in non-chordate embryos.
Condamine, T., Jager, M., Leclère, L., Blugeon, C., Lemoine, S., Copley, R. R. and Manuel, M. (2019). Molecular characterisation of a cellular conveyor belt in Clytia medusae. Dev. Biol. 456, 212–225.
Dardaillon, J., Dauga, D., Simion, P., Faure, E., Onuma, T. A., DeBiasse, M. B., Louis, A., Nitta, K. R., Naville, M., Besnardeau, L., et al. (2020). ANISEED 2019: 4D exploration of genetic data for an extended range of tunicates. Nucleic Acids Res. 48, D668–D675.
Erkenbrack, E. M., Croce, J. C., Miranda, E., Gautam, S., Martinez-Bartolome, M., Yaguchi, S. and Range, R. C. (2019). Whole mount in situ hybridization techniques for analysis of the spatial distribution of mRNAs in sea urchin embryos and early larvae. In Methods in Cell Biology Echinoderms, Part B (ed. Hamdoun, A.) and Foltz, K. R.), pp. 177–196. Academic Press.
Ferraioli, A. (2019). LE PROJET DE THESE EXPLOITERA L’ESPECE HYDROZOIQUE MODELE DE LABORATOIRE CLYTIA POUR DEFINIR DES PROFILS TRANSCRIPTIONNELS DE TYPES CELLULAIRES INDIVIDUELS SOUS FOR,E DE LARVES ET DE MEDUSES. PLUS PRECISEMENT, JE GENERERAI DES DONNEES DE TRANSCRIPTOME A CELLULE UNIQUE POUR DIFFERENTS TYPES DE CELLULES DE LA LARVE DE CLYTIA PLANULA, AINSI QUE DANS CERTAINES STRUCTURES DE MEDUSE QUE SERONT UTILISE POUR PRODUIRE, PAR HYBRIDATION IN SITU, DES CARTES DE TYPES CELLULAIRES CONNUS ET POUR IDENTIFIER POT.
Fiuza, U.-M., Negishi, T., Rouan, A., Yasuo, H. and Lemaire, P. (2019). A Nodal/Eph signalling relay drives the transition from apical constriction to apico-basal shortening in ascidian endoderm invagination. bioRxiv 418988.
Formery, L. (2019). Nervous system evolution: insights from the sea urchin,.
Formery, L., Schubert, M. and Croce, J. C. (2019). Ambulacrarians and the Ancestry of Deuterostome Nervous Systems. In Evo-Devo: Non-model Species in Cell and Developmental Biology (ed. Tworzydlo, W.) and Bilinski, S. M.), pp. 31–59. Cham: Springer International Publishing.
Gomes, I. D. L., Gazo, I., Besnardeau, L., Hebras, C., McDougall, A. and Dumollard, R. (2019a). Potential roles of nuclear receptors in mediating neurodevelopmental toxicity of known endocrine-disrupting chemicals in ascidian embryos. Molecular Reproduction and Development 86, 1333–1347.
Gomes, I. D. L., Gazo, I., Nabi, D., Besnardeau, L., Hebras, C., McDougall, A. and Dumollard, R. (2019b). Bisphenols disrupt differentiation of the pigmented cells during larval brain formation in the ascidian. Aquatic Toxicology 216, 105314.
Handberg-Thorsager, M., Ulman, V., Tomançak, P., Arendt, D. and Schubert, M. (2019). A Behavioral Assay to Study Effects of Retinoid Pharmacology on Nervous System Development in a Marine Annelid. In Retinoid and Rexinoid Signaling (ed. Ray, S. K.), pp. 193–207. New York, NY: Springer New York.
Hiebert, L. S., Vieira, E. A., Dias, G. M., Tiozzo, S. and Brown, F. D. (2019a). Colonial ascidians strongly preyed upon, yet dominate the substrate in a subtropical fouling community. bioRxiv 512699.
Hiebert, L. S., Vieira, E. A., Dias, G. M., Tiozzo, S. and Brown, F. D. (2019b). Colonial ascidians strongly preyed upon, yet dominate the substrate in a subtropical fouling community. Proc. Biol. Sci. 286, 20190396.
Hudson, C., Esposito, R., Palladino, A., Staiano, L., Ferrier, D., Faure, E., Lemaire, P., Yasuo, H. and Spagnuolo, A. (2019). Transcriptional regulation of the Ciona Gsx gene in the neural plate. Dev. Biol. 448, 88–100.
Jiménez-Merino, J., Santos de Abreu, I., Hiebert, L. S., Allodi, S., Tiozzo, S., De Barros, C. M. and Brown, F. D. (2019). Putative stem cells in the hemolymph and in the intestinal submucosa of the solitary ascidian Styela plicata. EvoDevo 10, 31.
Kraus, Y., Chevalier, S. and Houliston, E. (2019). Cell shape changes during larval body plan development in Clytia hemisphaerica. bioRxiv 864223.
Lechable, M., Jan, A., Weissbourd, B., Uveira, J., Gissat, L., Collet, S., Gilletta, L., Chevalier, S., Leclère, L., Peron, S., et al. (2019). An improved whole life cycle culture protocol for the hydrozoan genetic model Clytia hemisphaerica. bioRxiv 852632.
Leclère, L., Horin, C., Chevalier, S., Lapébie, P., Dru, P., Peron, S., Jager, M., Condamine, T., Pottin, K., Romano, S., et al. (2019). The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle. Nat Ecol Evol 3, 801–810.
Li, D., Roca, M., Yuecel, R. and Lorenz, A. (2019). Immediate visualization of recombination events and chromosome segregation defects in fission yeast meiosis. Chromosoma 128, 385–396.
McDougall, A., Chenevert, J., Godard, B. G. and Dumollard, R. (2019). Emergence of Embryo Shape During Cleavage Divisions. In Evo-Devo: Non-model Species in Cell and Developmental Biology (ed. Tworzydlo, W.) and Bilinski, S. M.), pp. 127–154. Cham: Springer International Publishing.
Miglioli, A., Dumollard, R., Balbi, T., Besnardeau, L. and Canesi, L. (2019). Characterization of the main steps in first shell formation in Mytilus galloprovincialis: possible role of tyrosinase. Proceedings of the Royal Society B: Biological Sciences 286, 20192043.
Molina, M. D., Gache, C. and Lepage, T. (2019). Chapter 9 - Expression of exogenous mRNAs to study gene function in echinoderm embryos. In Methods in Cell Biology (ed. Hamdoun, A.) and Foltz, K. R.), pp. 239–282. Academic Press.
Pagnamenta, A. T., Heemeryck, P., Martin, H. C., Bosc, C., Peris, L., Uszynski, I., Gory-Fauré, S., Couly, S., Deshpande, C., Siddiqui, A., et al. (2019). Defective tubulin detyrosination causes structural brain abnormalities with cognitive deficiency in humans and mice. Hum. Mol. Genet. 28, 3391–3405.
Peron, S. (2019). Bases cellulaires et moléculaires de la régénération chez la méduse Clytia hemisphaerica.
Philippe, H., Poustka, A. J., Chiodin, M., Hoff, K. J., Dessimoz, C., Tomiczek, B., Schiffer, P. H., Müller, S., Domman, D., Horn, M., et al. (2019). Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria. Curr. Biol. 29, 1818-1826.e6.
Prünster, M. M., Ricci, L., Brown, F. D. and Tiozzo, S. (2019a). Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis. EvoDevo 10, 3.
Prünster, M. M., Ricci, L., Brown, F. D. and Tiozzo, S. (2019b). De novo neurogenesis in a budding chordate: Co-option of larval anteroposterior patterning genes in a transitory neurogenic organ. Developmental Biology 448, 342–352.
Robert, N., Hammami, F., Lhomond, G., Dru, P., Lepage, T., Schubert, M. and Croce, J. C. (2019a). A wnt2 ortholog in the sea urchin Paracentrotus lividus. genesis 57, e23331.
Robert, N., Hammami, F., Lhomond, G., Dru, P., Lepage, T., Schubert, M. and Croce, J. C. (2019b). A wnt2 ortholog in the sea urchin Paracentrotus lividus. genesis.
Roca, M. (2019). The spindle assembly checkpoint in Phallusia mammillata embryos.
Scelzo, M., Alié, A., Pagnotta, S., Lejeune, C., Henry, P., Gilletta, L., Hiebert, L. S., Mastrototaro, F. and Tiozzo, S. (2019). Novel budding mode in Polyandrocarpa zorritensis: a model for comparative studies on asexual development and whole body regeneration. Evodevo 10, 7.
Sinigaglia, C., Peron, S., Steger, J., Houliston, E. and Leclère, L. (2019). Pattern regulation in a regenerating jellyfish. bioRxiv 2019.12.22.886200.